论文标题
$ \ Mathcal {pt} $ - 对称参数变形的MATHIEU电位的激体和跨性别参数
Instantons and transseries of the Mathieu potential deformed by a $\mathcal{PT}$-symmetry parameter
论文作者
论文摘要
我们研究了与$ \ Mathcal {pt} $对称性一致的Mathieu微分方程变形的非扰动效应。首先,我们通过在复杂平面的重新聚体之间建立了非弱点和遗产场景之间的连接,然后限制了$ \ Mathcal {pt} $变形参数。后者负责保留有关$ \ Mathcal {pt} $对称的信息,当时我们选择在Hermitian场景中工作。我们注意到,所有非扰动结果以及我们获得的变形Mathieu分区函数的跨系列表示中存在此因子。在量子力学中,我们发现$ \ Mathcal {pt} $对称性的变形参数对Hermitian场景中变形的Mathieu潜力的真实Instanton解决方案有效。随着其价值的增加,非热性因子使Instanton从一个最小值传递到另一个,也就是说,它会修改instanton宽度。对此的解释在于,随着我们增加变形参数的值,电势屏障的高度会降低。我们介绍了这种效果如何扩展到多个内斯坦顿水平以及instanton-anti-instanton对的弹跳极限。作为获得结果的应用,我们表明在hermitian场景中倾斜版本下的运动方程与约瑟夫森交界处的电阻分流连接(RSJ)模型相比。
We investigate the non-perturbative effects of a deformation of the Mathieu differential equation consistent with $\mathcal{PT}$ symmetry. First, we develop a connection between the non-Hermitian and Hermitian scenarios by a reparameterization in the complex plane, followed by a restriction of the $\mathcal{PT}$ deformation parameter. The latter is responsible for preserving the information about $\mathcal{PT}$ symmetry when we choose to work in the Hermitian scenario. We note that this factor is present in all non-perturbative results and in the transseries representation of the deformed Mathieu partition function that we have obtained. In quantum mechanics, we found that the deformation parameter of $\mathcal{PT}$ symmetry has an effect on the real instanton solution for the deformed Mathieu potential in the Hermitian scenario. As its value increases, the non-Hermiticity factor makes it smoother for the instanton to pass from one minimum to another, that is, it modifies the instanton width. The explanation for this lies in the fact that the height of the potential barrier decreases as we increase the value of the deformation parameter. We present how this effect extends to the multi-instanton level and to the bounce limit of an instanton-anti-instanton pair. As an application of the obtained results, we show that the equation of motion under a tilted version of the potential in the Hermitian scenario compares to the resistively shunted junction (RSJ) model for the Josephson junction.