论文标题

明智:白框图像样式通过示例学习

WISE: Whitebox Image Stylization by Example-based Learning

论文作者

Lötzsch, Winfried, Reimann, Max, Büssemeyer, Martin, Semmo, Amir, Döllner, Jürgen, Trapp, Matthias

论文摘要

基于图像的艺术渲染可以使用算法图像过滤综合各种表达式。与基于深度学习的方法相反,这些基于启发式的过滤技术可以在高分辨率图像上运行,可以解释,并且可以根据各个设计方面进行参数化。但是,适应或扩展这些技术生产新样式通常是一项乏味且容易出错的任务,需要专家知识。我们提出了一个新的范式来减轻此问题:实现算法图像过滤技术作为可区分的操作,可以学习与某些参考样式一致的参数化。为此,我们提出了明智的,这是一个基于示例的图像处理系统,可以在公共框架内处理多种风格化技术,例如水彩,油或卡通风格。通过训练全局和本地滤波器参数化的参数预测网络,我们可以同时适应参考样式和图像内容,例如增强面部特征。我们的方法可以在样式转移框架中进行优化,也可以在用于图像到图像翻译的生成对抗设置中学习。我们证明,共同训练XDOG滤波器和用于后处理的CNN可以与基于GAN的最新方法获得可比的结果。

Image-based artistic rendering can synthesize a variety of expressive styles using algorithmic image filtering. In contrast to deep learning-based methods, these heuristics-based filtering techniques can operate on high-resolution images, are interpretable, and can be parameterized according to various design aspects. However, adapting or extending these techniques to produce new styles is often a tedious and error-prone task that requires expert knowledge. We propose a new paradigm to alleviate this problem: implementing algorithmic image filtering techniques as differentiable operations that can learn parametrizations aligned to certain reference styles. To this end, we present WISE, an example-based image-processing system that can handle a multitude of stylization techniques, such as watercolor, oil or cartoon stylization, within a common framework. By training parameter prediction networks for global and local filter parameterizations, we can simultaneously adapt effects to reference styles and image content, e.g., to enhance facial features. Our method can be optimized in a style-transfer framework or learned in a generative-adversarial setting for image-to-image translation. We demonstrate that jointly training an XDoG filter and a CNN for postprocessing can achieve comparable results to a state-of-the-art GAN-based method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源