论文标题

通过启用缓存的本地更新,朝着沟通有效的垂直联合学习培训

Towards Communication-efficient Vertical Federated Learning Training via Cache-enabled Local Updates

论文作者

Fu, Fangcheng, Miao, Xupeng, Jiang, Jiawei, Xue, Huanran, Cui, Bin

论文摘要

垂直联合学习(VFL)是一个新兴的范式,它允许不同方(例如组织或企业)与隐私保护建立机器学习模型。在训练阶段,VFL仅交换跨各方的中间统计数据,即正向激活和向后衍生物,以计算模型梯度。然而,由于其地理分布性质,VFL培训通常会受到WAN带宽低的影响。 在本文中,我们介绍了一种新型有效的VFL培训框架Celu-VFL,该框架利用了本地更新技术来减少跨党派通信的回合。 CELU-VFL缓存了陈旧的统计数据,并将其重新估算模型梯度,而无需交换临时统计数据。提出了重要的技术来提高收敛性能。首先,为了解决随机方差问题,我们提出了一种统一的采样策略,以公平地选择本地更新的陈旧统计信息。其次,为了利用稳定性带来的错误,我们设计了一种实例加权机制,以衡量估计梯度的可靠性。理论分析证明,CELU-VFL达到了与Vanilla VFL训练相似的亚线性收敛速率,但需要更少的沟通回合。公共和现实世界工作负载的经验结果验证了CELU-VFL的速度可能比现有作品快六倍。

Vertical federated learning (VFL) is an emerging paradigm that allows different parties (e.g., organizations or enterprises) to collaboratively build machine learning models with privacy protection. In the training phase, VFL only exchanges the intermediate statistics, i.e., forward activations and backward derivatives, across parties to compute model gradients. Nevertheless, due to its geo-distributed nature, VFL training usually suffers from the low WAN bandwidth. In this paper, we introduce CELU-VFL, a novel and efficient VFL training framework that exploits the local update technique to reduce the cross-party communication rounds. CELU-VFL caches the stale statistics and reuses them to estimate model gradients without exchanging the ad hoc statistics. Significant techniques are proposed to improve the convergence performance. First, to handle the stochastic variance problem, we propose a uniform sampling strategy to fairly choose the stale statistics for local updates. Second, to harness the errors brought by the staleness, we devise an instance weighting mechanism that measures the reliability of the estimated gradients. Theoretical analysis proves that CELU-VFL achieves a similar sub-linear convergence rate as vanilla VFL training but requires much fewer communication rounds. Empirical results on both public and real-world workloads validate that CELU-VFL can be up to six times faster than the existing works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源