论文标题

Santa:使用照片真实的合成数据,一种基于深度学习的图像分析的新型方法

SYNTA: A novel approach for deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data

论文作者

Mill, Leonid, Aust, Oliver, Ackermann, Jochen A., Burger, Philipp, Pascual, Monica, Palumbo-Zerr, Katrin, Krönke, Gerhard, Uderhardt, Stefan, Schett, Georg, Clemen, Christoph S., Schröder, Rolf, Holtzhausen, Christian, Jabari, Samir, Maier, Andreas, Grüneboom, Anika

论文摘要

人工智能(AI),机器学习和深度学习(DL)方法在生物医学图像分析领域变得越来越重要。但是,为了利用此类方法的全部潜力,需要作为训练数据的代表性数量的实验获得的图像,其中包含大量手动注释对象。在这里,我们将语法(合成数据)作为一种新的方法,用于生成合成,光现实和高度复杂的生物医学图像作为DL系统的训练数据。我们在肌肉纤维和组织学部分中的结缔组织分析的背景下显示了方法的多功能性。我们证明,可以在以前看不见的现实世界数据上执行强大和专家级的细分任务,而无需仅使用合成训练数据手动注释。作为一种完全参数技术,我们的方法为生成对抗网络(GAN)构成了可解释的可控制替代方案,并且有可能在显微镜及其他各种生物医学应用中显着加速定量图像分析。

Artificial intelligence (AI), machine learning, and deep learning (DL) methods are becoming increasingly important in the field of biomedical image analysis. However, to exploit the full potential of such methods, a representative number of experimentally acquired images containing a significant number of manually annotated objects is needed as training data. Here we introduce SYNTA (synthetic data) as a novel approach for the generation of synthetic, photo-realistic, and highly complex biomedical images as training data for DL systems. We show the versatility of our approach in the context of muscle fiber and connective tissue analysis in histological sections. We demonstrate that it is possible to perform robust and expert-level segmentation tasks on previously unseen real-world data, without the need for manual annotations using synthetic training data alone. Being a fully parametric technique, our approach poses an interpretable and controllable alternative to Generative Adversarial Networks (GANs) and has the potential to significantly accelerate quantitative image analysis in a variety of biomedical applications in microscopy and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源