论文标题
3D心血管免疫荧光图像中使用点注释的弱监督的深度实例核检测
Weakly Supervised Deep Instance Nuclei Detection using Points Annotation in 3D Cardiovascular Immunofluorescent Images
论文作者
论文摘要
美国和全球的两个主要死亡原因是中风和心肌梗塞。两者的根本原因是由破裂或侵蚀的不稳定的动脉粥样硬化斑块释放的,这些斑块阻塞了心脏(心肌梗塞)或大脑(中风)的血管。临床研究表明,在斑块破裂或侵蚀事件中,斑块组成比病变大小更重要。为了确定斑块组成,计算了3D心血管免疫荧光图像的各种细胞类型的斑块病变。但是,手动计算这些细胞是昂贵的,耗时的,并且容易出现人为错误。手动计数的这些挑战激发了对自动化方法进行定位和计算图像中细胞的需求。这项研究的目的是开发一种自动方法,以最少的注释工作在3D免疫荧光图像中准确检测和计数细胞。在这项研究中,我们使用弱监督的学习方法使用点注释来训练悬停网络分割模型,以检测荧光图像中的核。使用点注释的优点是,与像素的注释相比,它们需要更少的精力。为了使用点注释训练悬停的网络模型,我们采用了一种普遍使用的群集标记方法将点注释转化为精确的细胞核二进制掩模。传统上,这些方法从点注释产生了二进制面具,使该物体周围的区域未标记(通常在模型训练中被忽略)。但是,这些区域可能包含有助于确定细胞边界的重要信息。因此,我们在这些区域使用了熵最小化的损失函数,以鼓励该模型在未标记的区域上输出更自信的预测。我们的比较研究表明,使用我们的弱训练的悬停网络模型...
Two major causes of death in the United States and worldwide are stroke and myocardial infarction. The underlying cause of both is thrombi released from ruptured or eroded unstable atherosclerotic plaques that occlude vessels in the heart (myocardial infarction) or the brain (stroke). Clinical studies show that plaque composition plays a more important role than lesion size in plaque rupture or erosion events. To determine the plaque composition, various cell types in 3D cardiovascular immunofluorescent images of plaque lesions are counted. However, counting these cells manually is expensive, time-consuming, and prone to human error. These challenges of manual counting motivate the need for an automated approach to localize and count the cells in images. The purpose of this study is to develop an automatic approach to accurately detect and count cells in 3D immunofluorescent images with minimal annotation effort. In this study, we used a weakly supervised learning approach to train the HoVer-Net segmentation model using point annotations to detect nuclei in fluorescent images. The advantage of using point annotations is that they require less effort as opposed to pixel-wise annotation. To train the HoVer-Net model using point annotations, we adopted a popularly used cluster labeling approach to transform point annotations into accurate binary masks of cell nuclei. Traditionally, these approaches have generated binary masks from point annotations, leaving a region around the object unlabeled (which is typically ignored during model training). However, these areas may contain important information that helps determine the boundary between cells. Therefore, we used the entropy minimization loss function in these areas to encourage the model to output more confident predictions on the unlabeled areas. Our comparison studies indicate that the HoVer-Net model trained using our weakly ...