论文标题
多项式多项式分解多项式
Polynomial-Time Power-Sum Decomposition of Polynomials
论文作者
论文摘要
我们提供了有效的算法,用于查找输入多项式$ p(x)= \ sum_ {i \ leq m} p_i(x)^d $的功率和分解。线性$ p_i $ s的情况相当于研究良好的张量分解问题,而二次情况则自然发生在研究低阶时刻的非球形高斯混合物的可识别性。 与张量分解不同,此问题的唯一可识别性和算法都没有得到充分理解。对于最简单的二次$ p_i $ s和$ d = 3 $的设置,GE,Huang和Kakade的先前工作只有在$ M \ leq \ tilde {o} {o}(\ sqrt {n})$时才能产生算法。另一方面,GARG,Kayal和Saha的最新结果构建了一种代数方法来处理任何$ M = N^{O(1)} $组件,但仅当$ D $足够大时(而在$ d = 3 $甚至$ d = 100 = 100 $的情况下无界限),并且只能处理对计数器的指数噪声。 我们的结果即使在$ d = 3 $和二次$ p_i $ s的基本案例中,上面的先前作品都可以进行大量的定量改进。具体而言,我们的算法成功地分解了$ m \ sim \ tilde {o}(n)$ generic quadratic $ p_i $ s for $ d = 3 $,更通常是$ d $ d $ th power-s $ m \ sim n^{2d/15} $ n^{2d/15} $ generic generic-generic degry-k $ k $ k $ polynomials for yony $ keq for yon noth for yony keq for任何我们的算法仅依赖于基本的数值线性代数原始基原始词(即获得任意微小的误差至数值精度),并且当$ p_i $ s具有随机的高斯系数时,可以处理逆多项式噪声。 我们的主要工具是一种通过研究输入$ p $的低阶部分衍生物的线性子空间来提取$ p_i $ s的线性跨度的新方法。为了在平均案例中建立我们的算法的多项式稳定性,我们证明了对某些相关随机矩阵的最小奇异值的逆多项式界限,而我们分析中出现的低度多项式条目。
We give efficient algorithms for finding power-sum decomposition of an input polynomial $P(x)= \sum_{i\leq m} p_i(x)^d$ with component $p_i$s. The case of linear $p_i$s is equivalent to the well-studied tensor decomposition problem while the quadratic case occurs naturally in studying identifiability of non-spherical Gaussian mixtures from low-order moments. Unlike tensor decomposition, both the unique identifiability and algorithms for this problem are not well-understood. For the simplest setting of quadratic $p_i$s and $d=3$, prior work of Ge, Huang and Kakade yields an algorithm only when $m \leq \tilde{O}(\sqrt{n})$. On the other hand, the more general recent result of Garg, Kayal and Saha builds an algebraic approach to handle any $m=n^{O(1)}$ components but only when $d$ is large enough (while yielding no bounds for $d=3$ or even $d=100$) and only handles an inverse exponential noise. Our results obtain a substantial quantitative improvement on both the prior works above even in the base case of $d=3$ and quadratic $p_i$s. Specifically, our algorithm succeeds in decomposing a sum of $m \sim \tilde{O}(n)$ generic quadratic $p_i$s for $d=3$ and more generally the $d$th power-sum of $m \sim n^{2d/15}$ generic degree-$K$ polynomials for any $K \geq 2$. Our algorithm relies only on basic numerical linear algebraic primitives, is exact (i.e., obtain arbitrarily tiny error up to numerical precision), and handles an inverse polynomial noise when the $p_i$s have random Gaussian coefficients. Our main tool is a new method for extracting the linear span of $p_i$s by studying the linear subspace of low-order partial derivatives of the input $P$. For establishing polynomial stability of our algorithm in average-case, we prove inverse polynomial bounds on the smallest singular value of certain correlated random matrices with low-degree polynomial entries that arise in our analyses.