论文标题

壳湍流模型的功能重量级化组方法

Functional renormalisation group approach to shell models of turbulence

论文作者

Fontaine, Côme, Tarpin, Malo, Bouchet, Freddy, Canet, Léonie

论文摘要

壳模型是流体动力湍流的简化模型,仅保留原始方程的一些基本特征,例如非线性,对称性和二次不变性。然而,它们被证明可以重现发达的湍流的最显着特性,特别是通用统计和多尺度。我们建立了功能性重量法化组(RG)形式主义,以研究通用的壳模型。特别是,我们制定了一个反RG流,该流程包括将从大尺度(小波数)的波动模式整合到小尺度(大型波数)的波动模式,该模式在物理上扎根,并在湍流中长期以来一直在主张。为了关注Sabra壳模型,我们研究了大规模强迫的效果,以及在所有尺度上施加的强迫强迫。我们表明,这两种强迫产生不同的固定点,因此对应于不同的普遍性类,其特征是不同的缩放指数。我们发现强迫的强迫会导致尺寸(类似K41)的缩放,而大规模强迫则需要异常缩放。

Shell models are simplified models of hydrodynamic turbulence, retaining only some essential features of the original equations, such as the non-linearity, symmetries and quadratic invariants. Yet, they were shown to reproduce the most salient properties of developed turbulence, in particular universal statistics and multi-scaling. We set up the functional renormalisation group (RG) formalism to study generic shell models. In particular, we formulate an inverse RG flow, which consists in integrating out fluctuation modes from the large scales (small wavenumbers) to the small scales (large wavenumbers), which is physically grounded and has long been advocated in the context of turbulence. Focusing on the Sabra shell model, we study the effect of both a large-scale forcing, and a power-law forcing exerted at all scales. We show that these two types of forcing yield different fixed points, and thus correspond to distinct universality classes, characterised by different scaling exponents. We find that the power-law forcing leads to dimensional (K41-like) scaling, while the large-scale forcing entails anomalous scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源