论文标题
熵不确定性关系的微不足道
The Trivial Bound of Entropic Uncertainty Relations
论文作者
论文摘要
熵不确定性关系是基础的,以计算量子加密应用中绑定的定量安全性,例如量子随机数(QRNG)和量子密钥分布(QKD)。所有的安全证明都会得出合法群体可访问的信息与对手可能获得的最大知识之间的关系,Eve eve利用了熵不确定性关系,即对下限夏娃对一个党派产生的原始密钥的不确定性爱丽丝(Alice)。标准的熵不确定性关系是利用平滑的最小和最大凝管来通过计算两个不兼容的测量值或正面有价值的措施(POVM)的重叠来显示这些加密应用程序的安全性。本文绘制了一个pOVM反化的标准熵不确定性关系的一个情况,从而产生了微不足道的结合,因为POVM中的最大重叠始终会产生微不足道的值“一个”。因此,它无法将平滑的最小透镜绑定,以显示量子加密应用程序的安全性。
Entropic uncertainty relations are underpinning to compute the quantitative security bound in quantum cryptographic applications, such as quantum random number generation (QRNG) and quantum key distribution (QKD). All security proofs derive a relation between the information accessible to the legitimate group and the maximum knowledge that an adversary may have gained, Eve, which exploits entropic uncertainty relations to lower bound Eve's uncertainty about the raw key generated by one party, Alice. The standard entropic uncertainty relations is to utilize the smooth min- and max-entropies to show these cryptographic applications' security by computing the overlap of two incompatible measurements or positive-operator valued measures (POVMs). This paper draws one case of the POVM-versioned standard entropic uncertainty relation yielding the trivial bound since the maximum overlap in POVMs always produces the trivial value, "one." So, it fails to tie the smooth min-entropy to show the security of the quantum cryptographic application.