论文标题

修改耐受签名方案:位置和校正

Modification tolerant signature schemes: location and correction

论文作者

Idalino, Thais Bardini, Moura, Lucia, Adams, Carlisle

论文摘要

本文考虑了可延展的数字签名,即在签名后修改数据的情况。它们可以用于可以修改数据(协作工作)的应用程序中,或者必须修改数据(可编辑和内容提取签名),或者我们需要知道已修改了数据的哪些部分(数据取证)。仅当签名是真实的,甚至没有修改了一点点消息时,仅在签名是真实的,甚至没有修改了一点点时,才有效。我们提出了一个通用耐受签名方案(MTSS)的一般框架,该框架可以提供仅位置或位置和校正,以在签名消息中进行修改,分为$ n $块。该一般方案使用一组必须指定的允许修改。我们提出了公差水平为$ d $的MTSS的实例化,表明在任何最多$ d $消息块中都可以显示修改。实践中需要此公差级别$ d $来参数化和控制签名大小的增长,相对于块的数量$ n $;使用组合组测试(CGT),签名具有尺寸$ o(d^2 \ log n)$,该$接近\ new {new {最著名}下限\ new \ new {of $ω(\ frac {d^2} {\ log log d} {\ log d}(\ log n)(\ log n))$}。使用Goodrich等人的CGT,沿着同样的方向进行了工作。 (ACNS 2005)和Idalino等。 (IPL 2015)。我们的工作与他们的工作有所不同,因为我们在一个方案中扩展了这些想法,以包括对可证明的安全性修改的修改,并且在计划的另一种变化中,我们朝相反的方向进行,并保证可分子签名的隐私,在这种情况下,可以防止任何泄漏被编辑的信息泄漏。

This paper considers malleable digital signatures, for situations where data is modified after it is signed. They can be used in applications where either the data can be modified (collaborative work), or the data must be modified (redactable and content extraction signatures) or we need to know which parts of the data have been modified (data forensics). A \new{classical} digital signature is valid for a message only if the signature is authentic and not even one bit of the message has been modified. We propose a general framework of modification tolerant signature schemes (MTSS), which can provide either location only or both location and correction, for modifications in a signed message divided into $n$ blocks. This general scheme uses a set of allowed modifications that must be specified. We present an instantiation of MTSS with a tolerance level of $d$, indicating modifications can appear in any set of up to $d$ message blocks. This tolerance level $d$ is needed in practice for parametrizing and controlling the growth of the signature size with respect to the number $n$ of blocks; using combinatorial group testing (CGT) the signature has size $O(d^2 \log n)$ which is close to the \new{best known} lower bound \new{of $Ω(\frac{d^2}{\log d} (\log n))$}. There has been work in this very same direction using CGT by Goodrich et al. (ACNS 2005) and Idalino et al. (IPL 2015). Our work differs from theirs in that in one scheme we extend these ideas to include corrections of modification with provable security, and in another variation of the scheme we go in the opposite direction and guarantee privacy for redactable signatures, in this case preventing any leakage of redacted information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源