论文标题
参数并行分布式变分量子算法
Parameter-Parallel Distributed Variational Quantum Algorithm
论文作者
论文摘要
变异量子算法(VQA)已成为一种有希望的近期技术,可以在嘈杂的中等规模量子(NISQ)设备上探索实用量子优势。但是,由于与反向传播的不兼容和大量测量的成本导致的参数训练过程效率低下,这对VQA的大规模发展构成了巨大挑战。在这里,我们提出了一个参数并行分布式变分量子算法(PPD-VQA),以通过使用多个量子处理器进行参数并行训练来加速训练过程。为了在现实的噪声场景中保持PPD-VQA的高性能,提出了一种替代训练策略来减轻由多个量子处理器之间噪声差异引起的加速衰减,这是分布式VQA的不可避免的共同问题。此外,还采用了梯度压缩来克服潜在的通信瓶颈。实现的结果表明,PPD-VQA可以为协调多个量子处理器来处理大规模的实词应用程序提供实用解决方案。
Variational quantum algorithms (VQAs) have emerged as a promising near-term technique to explore practical quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, the inefficient parameter training process due to the incompatibility with backpropagation and the cost of a large number of measurements, posing a great challenge to the large-scale development of VQAs. Here, we propose a parameter-parallel distributed variational quantum algorithm (PPD-VQA), to accelerate the training process by parameter-parallel training with multiple quantum processors. To maintain the high performance of PPD-VQA in the realistic noise scenarios, a alternate training strategy is proposed to alleviate the acceleration attenuation caused by noise differences among multiple quantum processors, which is an unavoidable common problem of distributed VQA. Besides, the gradient compression is also employed to overcome the potential communication bottlenecks. The achieved results suggest that the PPD-VQA could provide a practical solution for coordinating multiple quantum processors to handle large-scale real-word applications.