论文标题

部分可观测时空混沌系统的无模型预测

Anomaly inflow for local boundary conditions

论文作者

Ivanov, A. V., Vassilevich, D. V.

论文摘要

我们在借助热内核方法的帮助下研究了一个由局部边界条件的歧管上的dirac运算符的$η$ invariant。在什至维度上,我们将这种不变性与边界狄拉克操作员的$η$ invariants联系起来,而在奇数尺寸中,它是通过边界操作员的索引表示的。我们强调了强大的椭圆度条件的必要性,以使我们的方法的适用性。我们表明,尽管它们非常接近椭圆形,但witten-yonekura边界条件并不是很椭圆形。

We study the $η$-invariant of a Dirac operator on a manifold with boundary subject to local boundary conditions with the help of heat kernel methods. In even dimensions, we relate this invariant to $η$-invariants of a boundary Dirac operator, while in odd dimension, it is expressed through the index of boundary operators. We stress the necessity of the strong ellipticity condition for the applicability of our methods. We show that the Witten--Yonekura boundary conditions are not strongly elliptic, though they are very close to strongly elliptic ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源