论文标题
部分可观测时空混沌系统的无模型预测
Wigglite: Low-cost Information Collection and Triage
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Consumers conducting comparison shopping, researchers making sense of competitive space, and developers looking for code snippets online all face the challenge of capturing the information they find for later use without interrupting their current flow. In addition, during many learning and exploration tasks, people need to externalize their mental context, such as estimating how urgent a topic is to follow up on, or rating a piece of evidence as a "pro" or "con," which helps scaffold subsequent deeper exploration. However, current approaches incur a high cost, often requiring users to select, copy, context switch, paste, and annotate information in a separate document without offering specific affordances that capture their mental context. In this work, we explore a new interaction technique called "wiggling," which can be used to fluidly collect, organize, and rate information during early sensemaking stages with a single gesture. Wiggling involves rapid back-and-forth movements of a pointer or up-and-down scrolling on a smartphone, which can indicate the information to be collected and its valence, using a single, light-weight gesture that does not interfere with other interactions that are already available. Through implementation and user evaluation, we found that wiggling helped participants accurately collect information and encode their mental context with a 58% reduction in operational cost while being 24% faster compared to a common baseline.