论文标题

部分可观测时空混沌系统的无模型预测

Location retrieval using visible landmarks based qualitative place signatures

论文作者

Wei, Lijun, Gouet-Brunet, Valerie, Cohn, Anthony

论文摘要

基于视觉信息的位置检索是为了检索代理(例如人,机器人)的位置或通过将观测值与环境表示的某种形式的观测值进行比较而看到的区域。现有的方法通常需要精确的测量和存储观察到的环境特征,由于季节,观点,遮挡等的变化,这可能并不总是强大的。由于缺乏测量/成像设备,它们的扩展性还很挑战,并且可能不适用于人类。考虑到人类通常使用较少的精确但容易地产生定性的空间语言和高级语义地标在描述环境时,通过使用定性位置签名(QPS)来描述位置/地点,提出了定性的位置检索方法,该方法被定义为被定义为可感知的空间关系,从而在有序的Pairs co-Vis-Vis-Visible Landrarks Procecks ropecccept roveers roveers roveers roveersesersssrys roveerssers of Viewsersssers of Viewsersessersssects of ViewerseSersssements of Viewsersessers of Viewsersssers of ViewSerseSsers'''将空间划分为一个与附着的单个特征的每个单元格之后,提出了一种粗到精细的位置检索方法,以根据其定性观测值有效地识别观众的可能位置。使用公开可用的地标数据集评估了所提出方法的可用性和有效性,并通过考虑可能的感知误差,并通过模拟观察结果进行了评估。

Location retrieval based on visual information is to retrieve the location of an agent (e.g. human, robot) or the area they see by comparing the observations with a certain form of representation of the environment. Existing methods generally require precise measurement and storage of the observed environment features, which may not always be robust due to the change of season, viewpoint, occlusion, etc. They are also challenging to scale up and may not be applicable for humans due to the lack of measuring/imaging devices. Considering that humans often use less precise but easily produced qualitative spatial language and high-level semantic landmarks when describing an environment, a qualitative location retrieval method is proposed in this work by describing locations/places using qualitative place signatures (QPS), defined as the perceived spatial relations between ordered pairs of co-visible landmarks from viewers' perspective. After dividing the space into place cells each with individual signatures attached, a coarse-to-fine location retrieval method is proposed to efficiently identify the possible location(s) of viewers based on their qualitative observations. The usability and effectiveness of the proposed method were evaluated using openly available landmark datasets, together with simulated observations by considering the possible perception error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源