论文标题
部分可观测时空混沌系统的无模型预测
Safe Perception -- A Hierarchical Monitor Approach
论文作者
论文摘要
我们的运输世界正在迅速转变,自治水平不断提高。但是,为了获得全自动车辆的许可以供广泛的公众使用,有必要确保整个系统的安全性,这仍然是一个挑战。这尤其适用于基于AI的感知系统,这些系统必须处理各种环境条件和道路使用者,与此同时,应强调地检测所有相关的对象(即不应发生检测失误)。然而,有限的培训和验证数据可以证明无故障操作几乎无法实现,因为感知系统可能会暴露于公共道路上的新事物或未知的物体或条件。因此,需要针对基于AI的感知系统的新安全方法。因此,我们在本文中提出了一种新型的层次监视方法,能够从主要感知系统验证对象列表,可以可靠地检测检测失误,同时具有非常低的错误警报率。
Our transportation world is rapidly transforming induced by an ever increasing level of autonomy. However, to obtain license of fully automated vehicles for widespread public use, it is necessary to assure safety of the entire system, which is still a challenge. This holds in particular for AI-based perception systems that have to handle a diversity of environmental conditions and road users, and at the same time should robustly detect all safety relevant objects (i.e no detection misses should occur). Yet, limited training and validation data make a proof of fault-free operation hardly achievable, as the perception system might be exposed to new, yet unknown objects or conditions on public roads. Hence, new safety approaches for AI-based perception systems are required. For this reason we propose in this paper a novel hierarchical monitoring approach that is able to validate the object list from a primary perception system, can reliably detect detection misses, and at the same time has a very low false alarm rate.