论文标题
平坦的相对Mittag-Leffler模块和Zariski地区
Flat relative Mittag-Leffler modules and Zariski locality
论文作者
论文摘要
Mittag-Leffler特性的上升和下降有助于证明Raynaud和Gruson在\ cite {rg}中由Raynaud和Gruson撰写的(无限维)矢量束的Zariski局部性。最近,(无限生成的)倾斜模块和相关的准固定滑轮,\ cite {ah},\ cite {hst}的理论采用了相对的mittag-leffler模块。在这里,我们研究了Mittag-Leffler属性的相对版本的平坦和忠实地平坦的同态同构的上升和下降。特别是,我们证明了所有方案的本地F-Projementive Quasi-Coherent捆绑的Zariski位置,以及对于所有本地Nocunly Noepherian nonepherian方案的$ n $ drinfeld矢量套件的概念。
The ascent and descent of the Mittag-Leffler property were instrumental in proving Zariski locality of the notion of an (infinite dimensional) vector bundle by Raynaud and Gruson in \cite{RG}. More recently, relative Mittag-Leffler modules were employed in the theory of (infinitely generated) tilting modules and the associated quasi-coherent sheaves, \cite{AH}, \cite{HST}. Here, we study the ascent and descent along flat and faithfully flat homomorphisms for relative versions of the Mittag-Leffler property. In particular, we prove the Zariski locality of the notion of a locally f-projective quasi-coherent sheaf for all schemes, and for each $n \geq 1$, of the notion of an $n$-Drinfeld vector bundle for all locally noetherian schemes.