论文标题

婴儿运动分类通过压力分布分析

Infant movement classification through pressure distribution analysis

论文作者

Kulvicius, Tomas, Zhang, Dajie, Nielsen-Saines, Karin, Bölte, Sven, Kraft, Marc, Einspieler, Christa, Poustka, Luise, Wörgötter, Florentin, Marschik, Peter B

论文摘要

为了实现对神经运动疾病(例如脑瘫)的客观早期检测,我们提出了一种使用压力感应装置来对婴儿一般运动(GMS)进行分类的创新非侵入性方法。在这里,我们测试了使用压力数据来区分“烦躁时期”(即烦躁的运动)与“ fidgety时期”(即扭动运动)的可行性。参与者(n = 45)是从典型开发的婴儿队列中取样的。多模式传感器数据,包括带有1024个传感器的32x32网格压力传感垫的压力数据,在七个随后的实验室课程中,每两周一次,从后期的4-16周开始,每个婴儿在七个随后的实验室课程中都记录了每个婴儿的压力数据。为了证明概念验证,从两个有针对性的年龄段的1776年压力数据段(每5s)进行了运动分类。每个摘要都是根据人类评估者(FM+)或不存在(FM-)的相应同步视频数据预先注册的。测试了多个神经网络体系结构,以区分FM+与FM类别,包括支持向量机(SVM),进料 - 前向网络(FFNS),卷积神经网络(CNNS)和长期短期内存(LSTM)网络。 CNN达到了FM+与FM-的类最高平均分类精度(81.4%)。将针对自动GMA的其他方法与压力传感方法进行比较,我们得出的结论是,压力传感方法具有有效的大规模运动数据采集和共享的巨大潜力。作为回报,可以改善该方法,该方法可以证明可扩展用于评估婴儿神经运动功能的每日临床应用。

Aiming at objective early detection of neuromotor disorders such as cerebral palsy, we proposed an innovative non-intrusive approach using a pressure sensing device to classify infant general movements (GMs). Here, we tested the feasibility of using pressure data to differentiate typical GM patterns of the ''fidgety period'' (i.e., fidgety movements) vs. the ''pre-fidgety period'' (i.e., writhing movements). Participants (N = 45) were sampled from a typically-developing infant cohort. Multi-modal sensor data, including pressure data from a 32x32-grid pressure sensing mat with 1024 sensors, were prospectively recorded for each infant in seven succeeding laboratory sessions in biweekly intervals from 4-16 weeks of post-term age. For proof-of-concept, 1776 pressure data snippets, each 5s long, from the two targeted age periods were taken for movement classification. Each snippet was pre-annotated based on corresponding synchronised video data by human assessors as either fidgety present (FM+) or absent (FM-). Multiple neural network architectures were tested to distinguish the FM+ vs. FM- classes, including support vector machines (SVM), feed-forward networks (FFNs), convolutional neural networks (CNNs), and long short-term memory (LSTM) networks. The CNN achieved the highest average classification accuracy (81.4%) for classes FM+ vs. FM-. Comparing the pros and cons of other methods aiming at automated GMA to the pressure sensing approach, we concluded that the pressure sensing approach has great potential for efficient large-scale motion data acquisition and sharing. This will in return enable improvement of the approach that may prove scalable for daily clinical application for evaluating infant neuromotor functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源