论文标题
部分可观测时空混沌系统的无模型预测
Visual Interpretable and Explainable Deep Learning Models for Brain Tumor MRI and COVID-19 Chest X-ray Images
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep learning shows promise for medical image analysis but lacks interpretability, hindering adoption in healthcare. Attribution techniques that explain model reasoning may increase trust in deep learning among clinical stakeholders. This paper aimed to evaluate attribution methods for illuminating how deep neural networks analyze medical images. Using adaptive path-based gradient integration, we attributed predictions from brain tumor MRI and COVID-19 chest X-ray datasets made by recent deep convolutional neural network models. The technique highlighted possible biomarkers, exposed model biases, and offered insights into the links between input and prediction. Our analysis demonstrates the method's ability to elucidate model reasoning on these datasets. The resulting attributions show promise for improving deep learning transparency for domain experts by revealing the rationale behind predictions. This study advances model interpretability to increase trust in deep learning among healthcare stakeholders.