论文标题
部分可观测时空混沌系统的无模型预测
A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing datasets
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES) and the Hyper Suprime-Cam (HSC) survey. In this work we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are most sensitive to the cosmological information, and amplify them with respect to other aspects of the data. We find this optimal compression approach is able to preserve all the information related to the growth of structure; we also extend this scheme to derive weights to be applied to individual galaxies, and show that these produce near-optimal results.