论文标题
部分可观测时空混沌系统的无模型预测
Robust Clustering of the Local Milky Way Stellar Kinematic Substructures with Gaia eDR3
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We apply the clustering algorithm HDBSCAN on the Gaia early third data release astrometry combined with the Gaia second data release radial velocity measurements of almost 5.5 million stars to identify the local stellar kinematic substructures in the solar neighborhood. Understanding these structures helps build a more complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. The main goal of this study is to provide a list of the most stable clusters, by taking into account the measurement uncertainties and studying the stability of the clustering results. We apply the clustering algorithm in two spaces, in velocity space in order to study recently accreted structures, and in action-angle space to find phase-mixed structures. We find 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disk (Sequoia) are identified in velocity space (action-angle space). We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. Although we do not identify any new structures, we find that the HDBSCAN member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We therefore present the most stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries. (abridged)