论文标题
太空冠冕光学台(SCOOB):2。在真空兼容的冠状动脉测试床上,用于SpaceBorne高对比度成像技术中的波前传感和控制
The space coronagraph optical bench (SCoOB): 2. wavefront sensing and control in a vacuum-compatible coronagraph testbed for spaceborne high-contrast imaging technology
论文作者
论文摘要
2020年关于天文学和天体物理学的十年际调查认可了基于空间的高对比度成像,用于检测和表征可居住的系外行星,这是接下来的十年的关键优先事项。 To advance the maturity of starlight suppression techniques in a space-like environment, we are developing the Space Coronagraph Optical Bench (SCoOB) at the University of Arizona, a new thermal vacuum (TVAC) testbed based on the Coronagraphic Debris Exoplanet Exploring Payload (CDEEP), a SmallSat mission concept for high contrast imaging of circumstellar disks in scattered light.完成后,测试床将将矢量涡流冠状动脉(VVC)与来自波士顿微机械公司(BMC)的千乘微电机电系统(MEMS)变形镜,以及可在Visible Weavels的$ 10^{-8} $的原始对比度超过10^{-8} $的原始对比度的自我相机(SCC)。在本程序中,我们报告了在空气中测试的波前传感和控制工作,包括光学系统的质量性能以及用于使用电场偶联(EFC)和相关算法的焦点平面波侧控制算法的实施以及用于焦距 - 平面波前控制的算法和挖掘黑洞(焦平面高对比度)。
The 2020 Decadal Survey on Astronomy and Astrophysics endorsed space-based high contrast imaging for the detection and characterization of habitable exoplanets as a key priority for the upcoming decade. To advance the maturity of starlight suppression techniques in a space-like environment, we are developing the Space Coronagraph Optical Bench (SCoOB) at the University of Arizona, a new thermal vacuum (TVAC) testbed based on the Coronagraphic Debris Exoplanet Exploring Payload (CDEEP), a SmallSat mission concept for high contrast imaging of circumstellar disks in scattered light. When completed, the testbed will combine a vector vortex coronagraph (VVC) with a Kilo-C microelectromechanical systems (MEMS) deformable mirror from Boston Micromachines Corp (BMC) and a self-coherent camera (SCC) with a goal of raw contrast surpassing $10^{-8}$ at visible wavelengths. In this proceedings, we report on our wavefront sensing and control efforts on this testbed in air, including the as-built performance of the optical system and the implementation of algorithms for focal-plane wavefront control and digging dark holes (regions of high contrast in the focal plane) using electric field conjugation (EFC) and related algorithms.