论文标题
使用不精确的Newton算法的块共聚物系统定向自组装的化学上上皮指南的最佳设计
Optimal design of chemoepitaxial guideposts for directed self-assembly of block copolymer systems using an inexact-Newton algorithm
论文作者
论文摘要
块状聚合物(BCP)的定向自组装(DSA)是纳米级设备成本有效生产中最有希望的发展之一。该过程利用BCP混合物在相分离后形成纳米级结构的自然趋势。相位分离可以通过使用化学图案化的底物来促进形态的形成,这对于产生半导体设备至关重要。此外,底物模式的设计可以作为优化问题提出,我们寻求有效产生给定目标形态的最佳底物设计。 在本文中,我们采用了一个基于ohta-kawasaki自由能的最小化的非局部Cahn--Hilliard偏微分方程(PDE)给出的相位场模型,并为最佳设计问题提供了有效的PDE受限优化框架。设计变量是用于建模底物化学模式的圆形或条状引导柱的位置。为了解决随之而来的优化问题,我们提出了针对此问题量身定制的不精确牛顿共轭梯度算法的变体。我们证明了计算策略对跨越一系列目标形态的数值示例的有效性。由于我们的二阶优化器和快速状态求解器,数值结果表明,与以前的工作相比,计算成本降低了五个数量级。我们的框架效率和优化算法的快速收敛使我们能够迅速解决最佳设计问题,不仅在两个,而且还解决了三个空间维度。
Directed self-assembly (DSA) of block-copolymers (BCPs) is one of the most promising developments in the cost-effective production of nanoscale devices. The process makes use of the natural tendency for BCP mixtures to form nanoscale structures upon phase separation. The phase separation can be directed through the use of chemically patterned substrates to promote the formation of morphologies that are essential to the production of semiconductor devices. Moreover, the design of substrate pattern can formulated as an optimization problem for which we seek optimal substrate designs that effectively produce given target morphologies. In this paper, we adopt a phase field model given by a nonlocal Cahn--Hilliard partial differential equation (PDE) based on the minimization of the Ohta--Kawasaki free energy, and present an efficient PDE-constrained optimization framework for the optimal design problem. The design variables are the locations of circular- or strip-shaped guiding posts that are used to model the substrate chemical pattern. To solve the ensuing optimization problem, we propose a variant of an inexact Newton conjugate gradient algorithm tailored to this problem. We demonstrate the effectiveness of our computational strategy on numerical examples that span a range of target morphologies. Owing to our second-order optimizer and fast state solver, the numerical results demonstrate five orders of magnitude reduction in computational cost over previous work. The efficiency of our framework and the fast convergence of our optimization algorithm enable us to rapidly solve the optimal design problem in not only two, but also three spatial dimensions.