论文标题
外层磁场的红移演变
The redshift evolution of extragalactic magnetic fields
论文作者
论文摘要
遥远无线电源的法拉第旋转研究可以限制宇宙磁性的进化和起源。我们使用Lofar两米天空调查的数据:数据发布2(Lots DR2)来研究法拉第旋转量度(RM)对红移的依赖性。通过关注无线电来源,这些无线电来源在它们对天空的投影方面紧密,但在物理上无关(随机对),我们测量了两个来源之间的RM差异,即$δ$ rm。因此,我们将阿加乳外贡献与其他贡献分离为$δ$ rm。我们提供了随机对样本的统计分析,并找到一个中值的RM差异| $δ$ rm | $ =(1.79 \ pm 0.09)$ rad/m $^{2} $,带有| $δ$ rm |相对于临近源的红移差和近源的红移,以及比物理对的中位对$(1.65 \ pm 0.10)$ rad/m $ $^{2} $不相关。我们试图通过蒙特卡洛模拟来重现这一结果,假设种子宇宙学磁场和共磁场强度的红移演变为$ 1/(1 + Z)^γ$。我们发现最佳拟合结果$ b_0 \ equiv b _ {\ rm comoving}(z = 0)\ sillssim(2.0 \ pm 0.2)$ ng和$γ\ lyssim 4.5 \ pm 0.2 $,我们保守地引用了由于无型但不足而贡献的地方贡献的地方,因此对当地环境的贡献不足。与宇宙学模拟的比较表明,我们的结果与原始磁化方案不兼容,均具有均匀的种子Ng种子场。
Faraday rotation studies of distant radio sources can constrain the evolution and the origin of cosmic magnetism. We use data from the LOFAR Two Metre Sky Survey: Data Release 2 (LoTSS DR2) to study the dependence of the Faraday rotation measure (RM) on redshift. By focusing on radio sources that are close in terms of their projection on the sky, but physically unrelated (random pairs), we measure the RM difference, $Δ$RM, between the two sources. Thus, we isolate the extragalactic contribution to $Δ$RM from other contributions. We present a statistical analysis of the resulting sample of random pairs and find a median absolute RM difference |$Δ$RM| $ = (1.79 \pm 0.09)$ rad/m$^{2}$ , with |$Δ$RM| uncorrelated both with respect to the redshift difference of the pair and the redshift of the nearer source, and a median excess of random pairs over physical pairs of $(1.65 \pm 0.10)$ rad/m$^{2}$. We seek to reproduce this result with Monte Carlo simulations assuming a non vanishing seed cosmological magnetic field and a redshift evolution of the comoving magnetic field strength that varies as $1/(1 + z)^γ$. We find the best fitting results $B_0 \equiv B_{\rm comoving}(z = 0) \lesssim (2.0 \pm 0.2)$ nG and $γ\lesssim 4.5 \pm 0.2$ that we conservatively quote as upper limits due to an unmodelled but non vanishing contribution of local environments to the RM difference. A comparison with cosmological simulations shows our results to be incompatible with primordial magnetogenesis scenarios with uniform seed fields of order nG.