论文标题
使用不同基于变压器的模型的COVID-19假新闻检测的比较研究
A Comparative Study on COVID-19 Fake News Detection Using Different Transformer Based Models
论文作者
论文摘要
社交网络的快速发展以及互联网可用性的便利性加速了虚假新闻和社交媒体网站上的谣言的泛滥。在共同19的流行病中,这种误导性信息通过使人们的身心生命处于危险之中,从而加剧了这种情况。为了限制这种不准确性的传播,从在线平台中确定假新闻可能是第一步。在这项研究中,作者通过实施了五个基于变压器的模型,例如Bert,Bert没有LSTM,Albert,Roberta,以及Bert&Albert的混合体,以检测Internet的Covid 19欺诈新闻。 COVID 19假新闻数据集已用于培训和测试模型。在所有这些模型中,Roberta模型的性能优于其他模型,通过在真实和假阶级中获得0.98的F1分数。
The rapid advancement of social networks and the convenience of internet availability have accelerated the rampant spread of false news and rumors on social media sites. Amid the COVID 19 epidemic, this misleading information has aggravated the situation by putting peoples mental and physical lives in danger. To limit the spread of such inaccuracies, identifying the fake news from online platforms could be the first and foremost step. In this research, the authors have conducted a comparative analysis by implementing five transformer based models such as BERT, BERT without LSTM, ALBERT, RoBERTa, and a Hybrid of BERT & ALBERT in order to detect the fraudulent news of COVID 19 from the internet. COVID 19 Fake News Dataset has been used for training and testing the models. Among all these models, the RoBERTa model has performed better than other models by obtaining an F1 score of 0.98 in both real and fake classes.