论文标题
通过可解释的机器学习来阐明中间语言事实
Unravelling Interlanguage Facts via Explainable Machine Learning
论文作者
论文摘要
母语识别(NLI)是培训(通过监督机器学习)的任务,该分类器猜测文本作者的母语。在过去的十年中,这项任务已经进行了广泛的研究,多年来,NLI系统的性能稳步改善。我们专注于NLI任务的另一个方面,即分析由\ emph {可解释}机器学习算法培训的NLI分类器的内部,以获取对其分类决策的解释,并以最终的目的获得了洞察力的最终目标,以了解哪种语言现象为Alding a Speakean's Speaker's e Speaker's e Speaker's e Speaker's e Speaker's e Speaker's''''''''''。我们使用这种观点来解决NLI和(研究得多的)伴侣任务,即猜测是由本地人还是非本地人说的文本。使用三个不同来源的数据集(两个英语学习者论文的数据集和社交媒体帖子的数据集),我们研究哪种语言特征(词汇,形态学,句法和统计)最有效地解决了我们的两项任务,即扬声器的L1最有效。我们还提出了两个案例研究,一个是关于西班牙语的案例研究,另一个是关于英语的意大利学习者,我们分析了分类器对发现这些L1最重要的单个语言特征。总体而言,我们的研究表明,使用可解释的机器学习可能是TH的宝贵工具
Native language identification (NLI) is the task of training (via supervised machine learning) a classifier that guesses the native language of the author of a text. This task has been extensively researched in the last decade, and the performance of NLI systems has steadily improved over the years. We focus on a different facet of the NLI task, i.e., that of analysing the internals of an NLI classifier trained by an \emph{explainable} machine learning algorithm, in order to obtain explanations of its classification decisions, with the ultimate goal of gaining insight into which linguistic phenomena ``give a speaker's native language away''. We use this perspective in order to tackle both NLI and a (much less researched) companion task, i.e., guessing whether a text has been written by a native or a non-native speaker. Using three datasets of different provenance (two datasets of English learners' essays and a dataset of social media posts), we investigate which kind of linguistic traits (lexical, morphological, syntactic, and statistical) are most effective for solving our two tasks, namely, are most indicative of a speaker's L1. We also present two case studies, one on Spanish and one on Italian learners of English, in which we analyse individual linguistic traits that the classifiers have singled out as most important for spotting these L1s. Overall, our study shows that the use of explainable machine learning can be a valuable tool for th