论文标题
$ r $ - 分段图中的极大数量分离三角形
Extremal numbers of disjoint triangles in $r$-partite graphs
论文作者
论文摘要
对于两个图$ g $和$ f $,$ g $中的$ f $的极限数字,用{ex} $(g,f)$表示,是一个子图中不包含$ f $的$ g $的最大边数。确定给定图形$ f $的{ex} $(k_n,f)$是图理论中经典的极端问题。 1962年,Erdős确定{ex} $(k_n,kk_3)$,该$概括了Mantel的定理。另一方面,在1974年,{Bollobás},Erdős和Straus确定{ex} $(k_ {n_1,n_2,n_2,\ dots,n_r},k_t)$,它们占据了Turán的定理以完成多门图。 {在本文中,}我们确定{ex} $(k_ {n_1,n_2,\ dots,n_r},kk_3),kk_3)$对于$ r \ ge 4 $和$ 10K-4 \ le n_1+n_1+4k \ le n_2 \ le n_2 \ le n_3 \ le n_3 \ le \ cdots \ cdots \ cdots \ cdots \ le n_r n_r $。
For two graphs $G$ and $F$, the extremal number of $F$ in $G$, denoted by {ex}$(G,F)$, is the maximum number of edges in a spanning subgraph of $G$ not containing $F$ as a subgraph. Determining {ex}$(K_n,F)$ for a given graph $F$ is a classical extremal problem in graph theory. In 1962, Erdős determined {ex}$(K_n,kK_3)$, which generalized Mantel's Theorem. On the other hand, in 1974, {Bollobás}, Erdős, and Straus determined {ex}$(K_{n_1,n_2,\dots,n_r},K_t)$, which extended Turán's Theorem to complete multipartite graphs. { In this paper,} we determine {ex}$(K_{n_1,n_2,\dots,n_r},kK_3)$ for $r\ge 4$ and $10k-4\le n_1+4k\le n_2\le n_3\le \cdots \le n_r$.