论文标题

在高维设置中的动态离散选择建模的递归分区方法

A Recursive Partitioning Approach for Dynamic Discrete Choice Modeling in High Dimensional Settings

论文作者

Barzegary, Ebrahim, Yoganarasimhan, Hema

论文摘要

动态离散选择模型被广泛用于回答个人当前选择具有未来影响的设置中的实质性和政策问题。但是,这些模型的估计通常在计算密集型和/或在高维设置中是不可行的。确实,即使指定公用事业/国家过渡如何进入代理商的决策的结构,当我们没有指导理论时,在高维设置中都有挑战。在本文中,我们提出了动态离散选择模型的半参数公式,该模型还包含了一组高维状态变量,此外还包括参数实用程序函数中使用的标准变量。高维变量可以包括所有不是关注的主要变量的变量,但可能会影响人们的选择,并且必须包括在估计过程中,即控制变量。我们提出了一种数据驱动的递归分区算法,该算法通过考虑选择和状态过渡的变化来降低高维状态空间的维度。然后,研究人员可以使用他们选择的方法使用第一阶段的离散状态空间来估计问题。我们的方法可以减少估计偏差,并同时使估计可行。我们提供了蒙特卡洛模拟,以证明我们的方法的性能与我们忽略高维解释性变量集的标准估计方法相比。

Dynamic discrete choice models are widely employed to answer substantive and policy questions in settings where individuals' current choices have future implications. However, estimation of these models is often computationally intensive and/or infeasible in high-dimensional settings. Indeed, even specifying the structure for how the utilities/state transitions enter the agent's decision is challenging in high-dimensional settings when we have no guiding theory. In this paper, we present a semi-parametric formulation of dynamic discrete choice models that incorporates a high-dimensional set of state variables, in addition to the standard variables used in a parametric utility function. The high-dimensional variable can include all the variables that are not the main variables of interest but may potentially affect people's choices and must be included in the estimation procedure, i.e., control variables. We present a data-driven recursive partitioning algorithm that reduces the dimensionality of the high-dimensional state space by taking the variation in choices and state transition into account. Researchers can then use the method of their choice to estimate the problem using the discretized state space from the first stage. Our approach can reduce the estimation bias and make estimation feasible at the same time. We present Monte Carlo simulations to demonstrate the performance of our method compared to standard estimation methods where we ignore the high-dimensional explanatory variable set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源