论文标题
从测量非线性Sigma模型及其BV动作的Dirac Sigma模型
Dirac sigma models from gauging the nonlinear sigma models and its BV action
论文作者
论文摘要
我们通过测量二维非线性Sigma模型来介绍DIRAC SIGMA模型的构建,还包括与公制部门非微小耦合的可能性。我们表明,对于各种可能的情况,与公制部门的最小耦合是唯一的非平凡可能性。此外,我们还提出了为狄拉克·西格玛(Dirac Sigma)模型的古典batalin-vilkovisky动作的构建。我们通过要求它是经典主方程的解决方案来遵循其构造的直接方法。
We present the construction of the Dirac sigma models by gauging the 2-dimensional nonlinear sigma models, but also including the possibility of nonminimal coupling to the metric sector. We show that for a large variety of possible cases, the minimal coupling to the metric sector is the only nontrivial possibility. In addition, we present the construction of the classical Batalin-Vilkovisky action for the Dirac sigma models. We follow a direct approach in its construction, by requiring it to be a solution of the classical master equation.