论文标题

近似贝叶斯神经操作员:参数PDE的不确定性量化

Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs

论文作者

Magnani, Emilia, Krämer, Nicholas, Eschenhagen, Runa, Rosasco, Lorenzo, Hennig, Philipp

论文摘要

神经操作员是一种深层建筑,可以学会解决(即学习)部分微分方程(PDE)的非线性解决方案操作员。这些模型的当前艺术状态不能提供明确的不确定性量化。可以说,这是这种任务的问题,而不是机器学习中的其他地方,因为PDE通常描述的动态系统经常表现出微妙的多尺度结构,这会使人类很难发现错误。在这项工作中,我们首先在高斯过程的形式主义中首先提供了数学上详细的贝叶斯公式(线性)版本。然后,我们使用贝叶斯深度学习的近似方法将这种分析治疗扩展到一般的深层神经操作员。我们通过为神经操作员提供不确定性量化来扩展对神经操作员的先前结果。结果,我们的方法能够识别病例,并提供结构化的不确定性估计值,而神经操作员无法很好地预测。

Neural operators are a type of deep architecture that learns to solve (i.e. learns the nonlinear solution operator of) partial differential equations (PDEs). The current state of the art for these models does not provide explicit uncertainty quantification. This is arguably even more of a problem for this kind of tasks than elsewhere in machine learning, because the dynamical systems typically described by PDEs often exhibit subtle, multiscale structure that makes errors hard to spot by humans. In this work, we first provide a mathematically detailed Bayesian formulation of the ''shallow'' (linear) version of neural operators in the formalism of Gaussian processes. We then extend this analytic treatment to general deep neural operators using approximate methods from Bayesian deep learning. We extend previous results on neural operators by providing them with uncertainty quantification. As a result, our approach is able to identify cases, and provide structured uncertainty estimates, where the neural operator fails to predict well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源