论文标题
正常星系和尘土飞扬的星形区域周围的热气体,辐射和磁压的相对重要性
The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures Around Star-Forming Regions in Normal Galaxies and Dusty Starbursts
论文作者
论文摘要
在本文中,提出了对附近正常和发光红外星系样本中$ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ agraxies的相对重要性的研究。考虑到星系距离的范围,在跨越$ \ sim $ 0.1 $ -3 $ kpc的空间尺度上进行压力估计。热气体与辐射压的比率似乎并不显着取决于恒星形成速率表面密度($σ_ {\ rm sfr} $),但随着测量数量的孔径的物理大小的增加而表现出稳定的降低。磁性与放射压的比率似乎相对平坦,这是$σ_ {\ rm sfr} $的函数,对于核和核外区域的价值相似,但与热气体与放射压的比率相似,表现出随着光圈大小的增加而稳定的增加。此外,似乎磁性通常比亚kpc尺度上的辐射压力弱,并且仅在少数KPC尺度上起着重要作用。当求和时,将其与($σ_ {\ rm sfr} $ - 推断)KPC级动力平衡压力估计的比率大致恒定。因此,看来星系磁盘的物理区域,不一定是环境(例如核与核外区域)或恒星形成活动,在确定哪个压力项最活跃的恒星形成区域中可能起主要作用。这些结果与一个方案一致,在这种情况下,主要作用在不同物理量表上的过程共同起作用,以调节星系磁盘中的恒星形成过程。
In this paper, an investigation on the relative importance of the thermal gas, radiation, and (minimum-energy) magnetic pressures around $\approx$200 star-forming regions in a sample of nearby normal and luminous infrared galaxies is presented. Given the range of galaxy distances, pressure estimates are made on spatial scales spanning $\sim$0.1$-3$kpc. The ratio of thermal gas-to-radiation pressures does not appear to significantly depend on star formation rate surface density ($Σ_{\rm SFR}$), but exhibits a steady decrease with increasing physical size of the aperture over which the quantities are measured. The ratio of magnetic-to-radiation pressures appears to be relatively flat as a function of $Σ_{\rm SFR}$ and similar in value for both nuclear and extranuclear regions, but unlike the ratio of thermal gas-to-radiation pressures, exhibits a steady increase with increasing aperture size. Furthermore, it seems that the magnetic pressure is typically weaker than the radiation pressure on sub-kpc scales, and only starts to play a significant role on few-kpc scales. When the internal pressure terms are summed, their ratio to the ($Σ_{\rm SFR}$-inferred) kpc-scale dynamical equilibrium pressure estimates is roughly constant. Consequently, it appears that the physical area of the galaxy disk, and not necessarily environment (e.g., nuclear vs. extranuclear regions) or star formation activity, may play the dominant role in determining which pressure term is most active around star-forming regions. These results are consistent with a scenario in which a combination of processes acting primarily on different physical scales work collectively to regulate the star formation process in galaxy disks.