论文标题
Ennola第二个定理的算法,实际上计数平滑数字
An Algorithm for Ennola's Second Theorem and Counting Smooth Numbers in Practice
论文作者
论文摘要
令$ψ(x,y)$计数正整数$ n \ le x $的数量,以使$ n $的每个主要除数最多都是$ y $。给定输入$ x $和$ y $,估计$ψ(x,y)$的最佳方法是什么?我们以三种方式解决了这个问题:使用新的算法来估计$ψ(x,y)$,对已建立的算法进行性能提高,并基于基于经验的建议,如何选择算法以估算给定输入的算法$ψ$。 我们的新算法估计$ψ(x,y)$基于Ennola的第二个定理[ENNOLA69],该定理适用于$ y <(\ log x)^{3/4-ε} $ for $ε> 0 $。每次评估$ o(y^2/\ log y)$算术的算术操作和$ o(y \ log y)$ $(y \ log y)$每评估$ψ$。 我们通过以新的方式应用了与$ \ log \ log x $成比例的因素来展示基于Hildebrand and Tenenbaum [1986]的鞍点方法加快算法HT的速度。 最后,我们根据五种算法给出了经验建议,以计算$ψ(x,y)$的估计值。这里的挑战是,适用性范围(如定理中给出的范围),通常包括未知常数或$ε> 0 $的小值,例如,无法直接编程。
Let $Ψ(x,y)$ count the number of positive integers $n\le x$ such that every prime divisor of $n$ is at most $y$. Given inputs $x$ and $y$, what is the best way to estimate $Ψ(x,y)$? We address this problem in three ways: with a new algorithm to estimate $Ψ(x,y)$, with a performance improvement to an established algorithm, and with empirically based advice on how to choose an algorithm to estimate $Ψ$ for the given inputs. Our new algorithm to estimate $Ψ(x,y)$ is based on Ennola's second theorem [Ennola69], which applies when $y< (\log x)^{3/4-ε}$ for $ε>0$. It takes $O(y^2/\log y)$ arithmetic operations of precomputation and $O(y\log y)$ operations per evaluation of $Ψ$. We show how to speed up Algorithm HT, which is based on the saddle-point method of Hildebrand and Tenenbaum [1986], by a factor proportional to $\log\log x$, by applying Newton's method in a new way. And finally we give our empirical advice based on five algorithms to compute estimates for $Ψ(x,y)$.The challenge here is that the boundaries of the ranges of applicability, as given in theorems, often include unknown constants or small values of $ε>0$, for example, that cannot be programmed directly.