论文标题

用于服务类网络流量分类的细分学习

Segmented Learning for Class-of-Service Network Traffic Classification

论文作者

Manjunath, Yoga Suhas Kuruba, Zhao, Sihao, Abou-zeid, Hatem, Sediq, Akram Bin, Atawia, Ramy, Zhang, Xiao-Ping

论文摘要

服务类(COS)网络流量分类(NTC)对一组类似的流量应用程序进行了分类。 COS分类在Internet服务提供商的资源计划方面是有利的,并且避免了重新设计的必要性。我们的目标是找到一个健壮,轻巧且快速的COS分类器,该分类器在建模中使用较少的数据,并且不需要专门的功能提取工具。网络流段中统计特征的共同点促使我们提出新的细分学习,其中包括基本矢量表示和一种简单的分类方法。我们使用EVR表示向量形式中的分段流量。然后,使用随机森林对分段的流量进行建模,用于分类。我们的解决方案的成功依赖于找到最佳的段尺寸和建模所需的最小段数。该解决方案在多个数据集上进行了各种COS服务的验证,包括虚拟现实(VR)。研究工作的重大发现是i)需要确认和继续沟通请求的同步服务以99%的准确性分类,ii)任何会议中的最初1,000个包装足以为有希望的结果建模为COS流量,因此,我们可以快速部署COS分类器,III),即使在一个数据集中进行了培训,在一个数据集中也保持了测试结果,即使在不同的数据集中进行了培训。总而言之,我们的解决方案是第一个提出细分学习NTC的解决方案,该学习使用更少的功能以99%的精度对大多数COS流量进行分类。我们的解决方案的实现可在GitHub上获得。

Class-of-service (CoS) network traffic classification (NTC) classifies a group of similar traffic applications. The CoS classification is advantageous in resource scheduling for Internet service providers and avoids the necessity of remodelling. Our goal is to find a robust, lightweight, and fast-converging CoS classifier that uses fewer data in modelling and does not require specialized tools in feature extraction. The commonality of statistical features among the network flow segments motivates us to propose novel segmented learning that includes essential vector representation and a simple-segment method of classification. We represent the segmented traffic in the vector form using the EVR. Then, the segmented traffic is modelled for classification using random forest. Our solution's success relies on finding the optimal segment size and a minimum number of segments required in modelling. The solution is validated on multiple datasets for various CoS services, including virtual reality (VR). Significant findings of the research work are i) Synchronous services that require acknowledgment and request to continue communication are classified with 99% accuracy, ii) Initial 1,000 packets in any session are good enough to model a CoS traffic for promising results, and we therefore can quickly deploy a CoS classifier, and iii) Test results remain consistent even when trained on one dataset and tested on a different dataset. In summary, our solution is the first to propose segmentation learning NTC that uses fewer features to classify most CoS traffic with an accuracy of 99%. The implementation of our solution is available on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源