论文标题
几何分析可以使用简单的替代物从复杂的不可识别模型中获得生物学见解
Geometric analysis enables biological insight from complex non-identifiable models using simple surrogates
论文作者
论文摘要
计算生物学的持久挑战是平衡数据质量和数量与模型复杂性。已经开发了诸如可识别性分析和信息标准之类的工具来协调这种并置,但不能总是解决可用数据与数学模型中所需的粒度之间的不匹配,以回答重要的生物学问题。通常,只有简单的现象学模型,例如Logistic和Gompertz增长模型,可以从标准的实验测量中识别出来。为了从复杂的,不可识别的模型中获取结合关键生物学感兴趣的生物学机制的见解,我们研究了从复杂模型到简单,可识别的,可识别的替代模型的参数空间中地图的几何形状。通过研究复杂模型中的不可识别参数与替代物中的可识别参数有关,我们在典型的可识别性分析中介绍并利用了一组不可识别的参数与所研究的拟合度量或可能性的拟合度度量或可能性之间的解释。我们通过分析多细胞肿瘤球体生长的数学模型层次结构来证明我们的方法。来自肿瘤球体实验的典型数据是有限且嘈杂的,并且相应的数学模型通常是任意复杂的。我们的几何方法能够预测与单个数据特征相关的可识别参数组合中的非识别性,子集的不可识别的参数空间,并总体上提供了来自复杂的不可识别模型的其他生物学见解。
An enduring challenge in computational biology is to balance data quality and quantity with model complexity. Tools such as identifiability analysis and information criterion have been developed to harmonise this juxtaposition, yet cannot always resolve the mismatch between available data and the granularity required in mathematical models to answer important biological questions. Often, it is only simple phenomenological models, such as the logistic and Gompertz growth models, that are identifiable from standard experimental measurements. To draw insights from the complex, non-identifiable models that incorporate key biological mechanisms of interest, we study the geometry of a map in parameter space from the complex model to a simple, identifiable, surrogate model. By studying how non-identifiable parameters in the complex model quantitatively relate to identifiable parameters in surrogate, we introduce and exploit a layer of interpretation between the set of non-identifiable parameters and the goodness-of-fit metric or likelihood studied in typical identifiability analysis. We demonstrate our approach by analysing a hierarchy of mathematical models for multicellular tumour spheroid growth. Typical data from tumour spheroid experiments are limited and noisy, and corresponding mathematical models are very often made arbitrarily complex. Our geometric approach is able to predict non-identifiabilities, subset non-identifiable parameter spaces into identifiable parameter combinations that relate to individual data features, and overall provide additional biological insight from complex non-identifiable models.