论文标题

Hybridgnn:多重异质网络中的学习混合表示

HybridGNN: Learning Hybrid Representation in Multiplex Heterogeneous Networks

论文作者

Gu, Tiankai, Wang, Chaokun, Wu, Cheng, Xu, Jingcao, Lou, Yunkai, Wang, Changping, Xu, Kai, Ye, Can, Song, Yang

论文摘要

最近,图神经网络显示了建模基于网络的推荐系统中复杂拓扑结构的优势。由于节点之间的各种相互作用以及来自各种类型的节点和边缘的丰富语义,因此在多重异质网络中学习表达性节点表示的研究兴趣。推荐系统中最重要的任务之一是预测特定边缘类型下两个节点之间的潜在连接(即关系)。尽管现有的研究利用明确的元数据来汇总邻居,但实际上,它们仅考虑了关系内部的元数据,因此无法通过相互关联信息来利用潜在的提升。此外,在各种关系下,尤其是在越来越多的节点和边缘类型的情况下,全面利用互相关的元数据并不总是直接的。此外,两个节点之间不同关系的贡献很难衡量。为了应对挑战,我们提出了Hybridgnn,这是一种端到端的GNN模型,具有混合聚合流和分层的关注,以在多重方案中充分利用异质性。具体而言,Hybridgnn应用了一个随机的相互关系探索模块来利用不同关系之间的多重性属性。然后,我们的模型利用在关系内部的元数据和随机探索下的混合聚集流以学习丰富的语义。为了探索不同聚合流的重要性并利用多重性属性,我们提出了一个新型的分层注意模块,该模块既利用Metapath级别的注意力和关系级的关注。广泛的实验结果表明,与几个最先进的基线相比,Hybridgnn取得了最佳性能。

Recently, graph neural networks have shown the superiority of modeling the complex topological structures in heterogeneous network-based recommender systems. Due to the diverse interactions among nodes and abundant semantics emerging from diverse types of nodes and edges, there is a bursting research interest in learning expressive node representations in multiplex heterogeneous networks. One of the most important tasks in recommender systems is to predict the potential connection between two nodes under a specific edge type (i.e., relationship). Although existing studies utilize explicit metapaths to aggregate neighbors, practically they only consider intra-relationship metapaths and thus fail to leverage the potential uplift by inter-relationship information. Moreover, it is not always straightforward to exploit inter-relationship metapaths comprehensively under diverse relationships, especially with the increasing number of node and edge types. In addition, contributions of different relationships between two nodes are difficult to measure. To address the challenges, we propose HybridGNN, an end-to-end GNN model with hybrid aggregation flows and hierarchical attentions to fully utilize the heterogeneity in the multiplex scenarios. Specifically, HybridGNN applies a randomized inter-relationship exploration module to exploit the multiplexity property among different relationships. Then, our model leverages hybrid aggregation flows under intra-relationship metapaths and randomized exploration to learn the rich semantics. To explore the importance of different aggregation flow and take advantage of the multiplexity property, we bring forward a novel hierarchical attention module which leverages both metapath-level attention and relationship-level attention. Extensive experimental results suggest that HybridGNN achieves the best performance compared to several state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源