论文标题
某些图形的Sombor-Index样不变性
Sombor-index-like invariants of some graphs
论文作者
论文摘要
Sombor索引(SO)是一个基于顶点的图形不变性,定义为$ \ sqrt {d_i^2+d_j^2} $的所有相邻顶点的总和,其中$ d_i $是$ i $ $ $ thertex的程度。它已经使用了几何考虑。最近,考虑到几个经典拓扑指数(Zagreb,Albertson)的几何背景,考虑到一系列新的基于SO的图形不变式(由$ so_1,so_2,...,so_6 $表示)。在本文中,我们计算并研究了某些图,仙人掌链和聚合物的这些新指数。
The Sombor index (SO) is a vertex-degree-based graph invariant, defined as the sum over all pairs of adjacent vertices of $\sqrt{d_i^2+d_j^2}$, where $d_i$ is the degree of the $i$-th vertex. It has been conceived using geometric considerations. Recently, a series of new SO-like degree-based graph invariants (denoted by $SO_1, SO_2,..., SO_6$) is taken into consideration, when the geometric background of several classical topological indices (Zagreb, Albertson) has considered. In this paper, we compute and study these new indices for some graphs, cactus chains and polymers.