论文标题
同构和主要晶格的主要一致性。 iii。独立定理
Homomorphisms and principal congruences of bounded lattices. III. The Independence Theorem
论文作者
论文摘要
G.Czédli的新结果指出,对于有订购的套装$ p $,至少有两个元素和一个$ g $,存在一个有界的晶格$ l $,因此$ l $的主要一致性的有序集合是$ p $的同构和$ l $ l $ $ l $ yisomorphic for $ g $ $ g $ $ g $。我提供了一种替代证明,利用了1960年代后期的J. Sichler的结果。
A new result of G. Czédli states that for an ordered set $P$ with at least two elements and a group $G$, there exists a bounded lattice $L$ such that the ordered set of principal congruences of $L$ is isomorphic to $P$ and the automorphism group of $L$ is isomorphic to $G$. I provide an alternative proof utilizing a result of mine with J. Sichler from the late 1960-s.