论文标题

非交换性$ SO(2,3)_ {\ star} $重力理论

Noncommutative $SO(2,3)_{\star}$ Gauge Theory of Gravity

论文作者

Ćirić, Marija Dimitrijević, Đorđević, Dušan, Gočanin, Dragoljub, Nikolić, Biljana, Radovanović, Voja

论文摘要

拓扑引力(从某种意义上说,它是公制的,是2美元$维时的),可以通过添加一系列标量字段来表达ADS量规$ so(2,2n-1)$的规格场理论。这些标量可以打破拓扑重力作用的规格不变性,从而与爱因斯坦的重力建立联系。这篇综述是关于四维ADS重力理论(包括Dirac Spinors和Yang-Mills Field)的非交通性(NC)星星产物变形。通常,可以使用seiberg-witten地图以规范非交易性参数$θ$的功能扩展NC动作。扩展的前阶项是经典动作,而高阶$θ$依赖性项被解释为由于时空非交换性而导致的经典字段之间的新型耦合类型。我们研究了这些扰动的NC校正如何影响运动的场方程并得出某些现象学后果,例如电子的NC呈现的Landau水平。最后,我们讨论了在Kaluza-Klein还原的意义上,如何在四个维度(古典和非交通性)中的拓扑重力(包括经典和非交通性)如何成为五维Chern-Simons仪表理论的低能领域。

Topological gravity (in the sense that it is metric-independent) in a $2n$-dimensional spacetime can be formulated as a gauge field theory for the AdS gauge group $SO(2,2n-1)$ by adding a multiplet of scalar fields. These scalars can break the gauge invariance of the topological gravity action, thus making a connection with Einstein's gravity. This review is about a noncommutative (NC) star-product deformation of the four-dimensional AdS gauge theory of gravity, including Dirac spinors and the Yang-Mills field. In general, NC actions can be expanded in powers of the canonical noncommutativity parameter $θ$ using the Seiberg-Witten map. The leading-order term of the expansion is the classical action, while the higher-order $θ$-dependent terms are interpreted as new types of coupling between classical fields due to spacetime noncommutativity. We study how these perturbative NC corrections affect the field equations of motion and derive some phenomenological consequences, such as NC-deformed Landau levels of an electron. Finally, we discuss how topological gravity in four dimensions (both classical and noncommutative) appears as a low-energy sector of five-dimensional Chern-Simons gauge theory in the sense of Kaluza-Klein reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源