论文标题

一次一个节点:节点级网络分类

One Node at a Time: Node-Level Network Classification

论文作者

Shai, Saray, Jacobs, Isaac, Mucha, Peter J.

论文摘要

网络分类旨在根据其结构将网络(或图形)分为不同的类别。我们研究网络及其组成节点的分类之间的联系,以及不同组网络的节点是否基于结构性节点特征,例如中心性和聚类系数。我们使用各种网络数据集和随机网络模型证明,可以训练分类器以准确预测给定节点的网络类别(不看到整个网络),这意味着复杂的网络即使在节点级别也显示出不同的结构模式。最后,我们讨论了节点级网络分类的两个应用程序:(i)节点小样本和(ii)网络引导。

Network classification aims to group networks (or graphs) into distinct categories based on their structure. We study the connection between classification of a network and of its constituent nodes, and whether nodes from networks in different groups are distinguishable based on structural node characteristics such as centrality and clustering coefficient. We demonstrate, using various network datasets and random network models, that a classifier can be trained to accurately predict the network category of a given node (without seeing the whole network), implying that complex networks display distinct structural patterns even at the node level. Finally, we discuss two applications of node-level network classification: (i) whole-network classification from small samples of nodes, and (ii) network bootstrapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源