论文标题

使用弹性地图从演示中学习机器人

Robot Learning from Demonstration Using Elastic Maps

论文作者

Hertel, Brendan, Pelland, Matthew, Ahmadzadeh, S. Reza

论文摘要

从示范中学习(LFD)是一种从人提供的演示中复制和概括机器人技能的流行方法。在本文中,我们提出了一种基于优化的新型LFD方法,该方法将演示描述为弹性图。弹性图是通过弹簧网格连接的节点的图。我们通过将弹性地图拟合到一组演示中来构建技能模型。我们方法中的公式优化问题包括三个具有自然和物理解释的目标。主术语奖励笛卡尔坐标中的平方误差。第二项惩罚导致最佳轨迹总长度的点的非等应存在分布。第三学期奖励平滑度,同时惩罚非线性。这些二次目标形成了凸问题,可以通过局部优化器有效地解决。我们研究了九种用于构建和加权弹性图并研究其在机器人任务中的性能的方法。我们还使用UR5E操纵器组在几个模拟和现实实验中评估了所提出的方法,并将其与其他LFD方法进行比较,以证明其在各种指标中的益处和灵活性。

Learning from Demonstration (LfD) is a popular method of reproducing and generalizing robot skills from human-provided demonstrations. In this paper, we propose a novel optimization-based LfD method that encodes demonstrations as elastic maps. An elastic map is a graph of nodes connected through a mesh of springs. We build a skill model by fitting an elastic map to the set of demonstrations. The formulated optimization problem in our approach includes three objectives with natural and physical interpretations. The main term rewards the mean squared error in the Cartesian coordinate. The second term penalizes the non-equidistant distribution of points resulting in the optimum total length of the trajectory. The third term rewards smoothness while penalizing nonlinearity. These quadratic objectives form a convex problem that can be solved efficiently with local optimizers. We examine nine methods for constructing and weighting the elastic maps and study their performance in robotic tasks. We also evaluate the proposed method in several simulated and real-world experiments using a UR5e manipulator arm, and compare it to other LfD approaches to demonstrate its benefits and flexibility across a variety of metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源