论文标题
非相互作用的无旋转费米的系统的许多身体密度
Many Body Density of States of a system of non interacting spinless fermions
论文作者
论文摘要
超平衡多体系统的建模需要超越低能量的物理学和局部密度。多体定位,存在或缺乏热化和量子混乱是现象的例子,在这种现象中,不同的能量尺度(包括高度激发的状态)有助于动力学,因此会影响系统的性质。量化这些贡献需要状态的多体密度(MBDOS),该函数的计算即使对于非相同的相同量子粒子,由于枚举状态的难度,在执行交换对称性的同时,它也变得具有挑战性。在目前的工作中,我们引入了一种新方法来评估可以映射到自由费米子的系统的情况下。我们方法的起点是填充矩阵$ f $的主要组件分析,描述了如何将$ n $ fermions配置为$ l $ $单粒子能级。我们表明,许多体光谱可以作为由填充矩阵的主要成分给出的加权光谱扩展。加权系数仅涉及从单体光谱获得的重新归一化能。我们在两类问题中说明了我们的方法,这些问题被映射到无旋转的费米子中:(i)1D和2D中均质的紧密结合模型中的非相互作用电子,以及(ii)在横向场下的链中相互作用的旋转。
The modeling of out-of-equilibrium many-body systems requires to go beyond the low-energy physics and local densities of states. Many-body localization, presence or lack of thermalization and quantum chaos are examples of phenomena in which states at different energy scales, including the highly excited ones, contribute to the dynamics and therefore affect the system's properties. Quantifying these contributions requires the many-body density of states (MBDoS), a function whose calculation becomes challenging even for non-interacting identical quantum particles due to the difficulty in enumerating states while enforcing the exchange symmetry. In the present work, we introduce a new approach to evaluate the MBDoS in the case of systems that can be mapped into free fermions. The starting point of our method is the principal component analysis of the filling matrix $F$ describing how $N$ fermions can be configured into $L$ single-particle energy levels. We show that the many body spectrum can be expanded as a weighted sum of spectra given by the principal components of the filling matrix. The weighting coefficients only involve renormalized energies obtained from the single body spectrum. We illustrate our method in two classes of problems that are mapped into spinless fermions: (i) non-interacting electrons in a homogeneous tight-binding model in 1D and 2D, and (ii) interacting spins in a chain under a transverse field.