论文标题

在算术功能的迭代中增加了降低模式

Increasing-decreasing patterns in the iteration of an arithmetic function

论文作者

Nathanson, Melvyn B.

论文摘要

令$ω$为一组正整数,让$ f:ω\rightarrowΩ$为算术函数。令$ v =(v_i)_ {i = 1}^n $是正整数的有限顺序。如果,对于$ f $,对于$ f $,则一个整数$ m \具有\ textIt {增加decreasing模式} $ v $。 v_ {i-1} +1}(m)<\ cdots <f^{v_1+ \ cdots+ v_ {i-1}+ v_ {i}}}}(m)\],对于所有整数$ i \ in \ in \ in \ in \ in \ in \ {2,\ ldots v_ {i-1}}(m)> f^{v_1+\ cdots+v_ {i-1} +1} +1}(m)> \ cdots> f^{v_1+\ cdots+cdots+v_ {i-1}+v_i}(m)。 \ \]算术函数$ f $是\ textit {griang flical in decreasing}如果对于每个有限序列$ v $的正整数$ v $,则存在一个整数$ m \ inω$,以至于$ m $具有增加消除模式$ v $,而不是$ f $。本文证明了锡拉丘兹的功能正在大大提高折扣。

Let $Ω$ be a set of positive integers and let $f:Ω\rightarrow Ω$ be an arithmetic function. Let $V = (v_i)_{i=1}^n$ be a finite sequence of positive integers. An integer $m \in Ω$ has \textit{increasing-decreasing pattern} $V$ with respect to $f$ if, for all odd integers $i \in \{1,\ldots, n\}$, \[ f^{v_1+ \cdots + v_{i-1}}(m) < f^{v_1+ \cdots + v_{i-1}+1}(m) < \cdots < f^{v_1+ \cdots + v_{i-1}+v_{i}}(m) \] and, for all even integers $i \in \{2,\ldots, n\}$, \[ f^{v_1+ \cdots + v_{i-1}}(m) > f^{v_1+ \cdots +v_{i-1}+1}(m) > \cdots > f^{v_1+ \cdots +v_{i-1}+v_i}(m). \] The arithmetic function $f$ is \textit{wildly increasing-decreasing} if, for every finite sequence $V$ of positive integers, there exists an integer $m \in Ω$ such that $m$ has increasing-decreasing pattern $V$ with respect to $f$. This paper gives a proof that the Syracuse function is wildly increasing-decreasing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源