论文标题

图形神经网络从Sentinel-2图像系列提取高分辨率的耕地图

Graph Neural Networks Extract High-Resolution Cultivated Land Maps from Sentinel-2 Image Series

论文作者

Tulczyjew, Lukasz, Kawulok, Michal, Longépé, Nicolas, Saux, Bertrand Le, Nalepa, Jakub

论文摘要

通过优化农业管理实践来维持农场的可持续性有助于建立更适合星球的环境。新兴的卫星任务可以获取多光谱图像,从而捕获有关扫描区域的更详细的光谱信息,因此,在农业应用分析过程中,我们可以从细微的光谱特征中受益。我们介绍了一种从10 m Sentinel-2多光谱图像系列中提取2.5 m培养的陆地图的方法,该图像受益于紧凑的图形卷积神经网络。实验表明,与U-NET相比,我们的模型不仅通过提供更高质量的分割图来优于经典和深度的机器学习技术,而且还大大减少了内存足迹(我们模型的几乎可训练的参数,具有31m的U-Nets参数)。在任务中,这种记忆节俭在任务中至关重要,这使我们能够在轨道进入轨道后将模型上行链接到AI驱动的卫星,因为由于时间限制,不可能发送大型网。

Maintaining farm sustainability through optimizing the agricultural management practices helps build more planet-friendly environment. The emerging satellite missions can acquire multi- and hyperspectral imagery which captures more detailed spectral information concerning the scanned area, hence allows us to benefit from subtle spectral features during the analysis process in agricultural applications. We introduce an approach for extracting 2.5 m cultivated land maps from 10 m Sentinel-2 multispectral image series which benefits from a compact graph convolutional neural network. The experiments indicate that our models not only outperform classical and deep machine learning techniques through delivering higher-quality segmentation maps, but also dramatically reduce the memory footprint when compared to U-Nets (almost 8k trainable parameters of our models, with up to 31M parameters of U-Nets). Such memory frugality is pivotal in the missions which allow us to uplink a model to the AI-powered satellite once it is in orbit, as sending large nets is impossible due to the time constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源