论文标题

中等范围恶劣天气预测的新范式:基于森林的概率随机预测

A new paradigm for medium-range severe weather forecasts: probabilistic random forest-based predictions

论文作者

Hill, Aaron J., Schumacher, Russ S., Jirak, Israel

论文摘要

全球合奏预测系统V12(GEFSV12)重新记录数据集(GEFS/R)的恶劣天气和模拟恶劣天气环境(即特征)的历史观察被用于训练和测试随机森林(RF)机器学习(ML)机器学习(ML)模型,以预测严重的严重天气。 RF经过9年的GEFS/R和恶劣天气报告,以建立统计关系。简要探索功能工程以检查围绕观察到的事件收集功能的替代方法,包括使用空间平均值简化特征,并随着时间隔断而增加GEFS/R集合的大小。经过验证的RF模型通过运营GEFSV12集合的实时预测进行了约1。5年的测试,并与Storm预测中心(SPC)的专家生成的前景一起评估。在第4天和第5天,基于RF的预测和SPC的前景在此后的气候方面都熟练,此后有降解的技能。基于RF的预测表现出预测恶劣天气事件的趋势,但在较低的概率阈值下,它们倾向于得到很好的校准。在RF训练期间,在空间上平均预测因素可以使早期的热力学和运动学环境产生熟练的预测,而时间停滞的行为可以扩大预测区域,从而增加了分辨率,但降低了客观技能。结果突出了ML生成产品的实用性,以帮助SPC预测操作到中等范围。

Historical observations of severe weather and simulated severe weather environments (i.e., features) from the Global Ensemble Forecast System v12 (GEFSv12) Reforecast Dataset (GEFS/R) are used in conjunction to train and test random forest (RF) machine learning (ML) models to probabilistically forecast severe weather out to days 4--8. RFs are trained with 9 years of the GEFS/R and severe weather reports to establish statistical relationships. Feature engineering is briefly explored to examine alternative methods for gathering features around observed events, including simplifying features using spatial averaging and increasing the GEFS/R ensemble size with time-lagging. Validated RF models are tested with ~1.5 years of real-time forecast output from the operational GEFSv12 ensemble and are evaluated alongside expert human-generated outlooks from the Storm Prediction Center (SPC). Both RF-based forecasts and SPC outlooks are skillful with respect to climatology at days 4 and 5 with degrading skill thereafter. The RF-based forecasts exhibit tendencies to underforecast severe weather events, but they tend to be well-calibrated at lower probability thresholds. Spatially averaging predictors during RF training allows for prior-day thermodynamic and kinematic environments to generate skillful forecasts, while time-lagging acts to expand the forecast areas, increasing resolution but decreasing objective skill. The results highlight the utility of ML-generated products to aid SPC forecast operations into the medium range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源