论文标题
各向异性磁转移特性,以及在三角晶格磁铁Euznge中的螺旋自旋调制
Anisotropic magnetotransport properties coupled with spiral spin modulation in a triangular-lattice magnet EuZnGe
论文作者
论文摘要
我们使用密封的tantalum管中的Eu-Zn通量生长的单晶进行了三角晶格抗铁磁铁Euznge的热力学,磁性和电运输特性。发现磁性在顺磁性状态下是各向同性的,而我们观察到在t* = 11.3 K的温度下的平面磁敏感性提高,这表明在低温下,易于平面各向异性。磁过渡温度低于T*,因为特定的热量显示了Tn = 7.6 K处的峰。我们通过在欧盟L2边缘的谐振X射线散射揭示了沿C轴的磁调节,这表明欧盟三角晶格层之间具有竞争性的磁相互作用。我们观察到沿TN以下(0,0,L)的强度曲线中的双峰结构,该结构主要由Q〜(0,0,0,0.4)的主要螺旋调制组成,并与Q〜(0,0,0,0.5)的次要贡献共存。我们通过六角形旋转旋转螺旋的随机混合物的随机混合物,由于六边形的平面内各向异性而导致旋转旋转跳过。金属电导率是高度各向异性的,在整个温度范围内Rho_zz/rho_xx的比率超过10,此外还表现出TN时Rho_zz的急剧增强,从而引起了Rho_zz/Rho_xx〜50,这表明在平板电子传导和螺旋磁磁体之间耦合。平面磁场会诱导旋转杆子之类的跃迁,其中Q = 0.4峰消失,并且出现了大约QICM 〜0.47的不相称的峰,而Q = 0.5调制的峰值保留了有限的强度。该过渡与非单调磁场抗性和霍尔电阻率相关,表明通过Ruderman-Kittel-Kasuya-Yosida(Rkky)相互作用,电子与自旋结构之间存在显着相互作用。
We investigate the thermodynamic, magnetic, and electrical transport properties of a triangular-lattice antiferromagnet EuZnGe using single crystals grown from Eu-Zn flux in sealed tantalum tubes. Magnetic properties are found to be isotropic in the paramagnetic state while we observe an enhancement of in-plane magnetic susceptibility at the temperature near T* =11.3 K, suggesting an easy-plane anisotropy at low temperatures. Magnetic transition temperature is lower than T* as specific heat shows a peak at TN =7.6 K. We reveal the magnetic modulation along the c axis by resonant x-ray scattering at Eu L2 edge, which suggests competing magnetic interaction among Eu triangular-lattice layers. We observe a double-peak structure in the intensity profile along (0, 0, L) below TN, which is mainly composed of a dominant helical modulation with q ~ (0, 0, 0.4) coexisting with a secondary contribution from q ~ (0, 0, 0.5). We reproduce the intensity profile with a random mixture of five- and four-sublattice helices with spin rotation skipping due to hexagonal in-plane anisotropy. The metallic conductivity is highly anisotropic with the ratio rho_zz/rho_xx exceeding 10 over the entire temperature range and additionally exhibits a sharp enhancement of rho_zz at TN giving rise to rho_zz/rho_xx ~ 50, suggesting a coupling between out-of-plane electron conduction and the spiral magnetic modulations. In-plane magnetic field induces a spin-flop like transition, where the q = 0.4 peak disappears and an incommensurate peak of approximately qICM ~ 0.47 emerges, while the q = 0.5 modulation retains a finite intensity. This transition correlates with non-monotonic magnetoresistance and Hall resistivity, suggesting a significant interplay between electrons and spin structures through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.