论文标题
一种代数方法,用于计算整数的表示数量$ x^2+ay^2 $的某些值$ a $ $ a $
An algebraic approach to count the number of representations of an integer by the quadratic form $x^2+ay^2$ for certain values of $a$
论文作者
论文摘要
通过考虑$ \ mathbb {q}(\ sqrt {-a})$中整数中的元素规范,我们给出了一种代数方法来计算$ x^2+ay^2 = n $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a heegner编号或$ a heegner number as a heegner number as a heegner number as a heegner number as a heegner number的积分解决方案的数量。
By considering the norm of elements in the ring of integers in $\mathbb{Q}(\sqrt{-a})$, we give an algebraic approach to count the number of integral solutions of diophantine equations of the form $x^2+ay^2=n$ where $a$ is a Heegner number or $a=27$.