论文标题

一种代数方法,用于计算整数的表示数量$ x^2+ay^2 $的某些值$ a $ $ a $

An algebraic approach to count the number of representations of an integer by the quadratic form $x^2+ay^2$ for certain values of $a$

论文作者

Dechakulkamjorn, Thanathat, Rungtanapirom, Nithi

论文摘要

通过考虑$ \ mathbb {q}(\ sqrt {-a})$中整数中的元素规范,我们给出了一种代数方法来计算$ x^2+ay^2 = n $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a heegner编号或$ a heegner number as a heegner number as a heegner number as a heegner number as a heegner number的积分解决方案的数量。

By considering the norm of elements in the ring of integers in $\mathbb{Q}(\sqrt{-a})$, we give an algebraic approach to count the number of integral solutions of diophantine equations of the form $x^2+ay^2=n$ where $a$ is a Heegner number or $a=27$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源