论文标题

来自原子模拟的聚合物碳的结构和光学性质

Structure and optical properties of polymeric carbon nitrides from atomistic simulations

论文作者

Im, Changbin, Kirchhoff, Björn, Krivtsov, Igor, Mitoraj, Dariusz, Beranek, Radim, Jacob, Timo

论文摘要

对聚合物氮化碳(PCN)材料的结构和光物理特性的详细理解对于推导未来的材料优化策略至关重要,这是针对更理想的光学特性和更多光催化活性材料的重要性。但是,合成PCN中发现的广泛的结构基序使依赖于定义良好模型的原子模拟变得复杂。进行杂交DFT研究,我们系统地研究了PCN的形成能量趋势和光学特性,这是维数的函数,从定期板模型上的分子寡聚物到堆叠的晶体。考虑到振动焓和熵贡献的热化学计算预测,在典型的合成条件下,包括瓜弦结构,poly(Heptazine Imide)和G-C3N4基序在内的结构基序的混合物是稳定的。侧向冷凝的程度以及堆叠可以减少带隙,而材料的平面瓦楞纸均增加了稳定性和光学间隙。这项工作的关键结果是,已经计算出强凝PCN的小域,从而产生有利的光学特性。该结果调解了相互矛盾的文献报告,表明与实验相比,热力学上有利的瓜序具有太大的带隙,而G-C3N4结构(对于该结构)与实验更好地吻合的G-C3N4结构与实验更好的一致,与测量的PCNs化学化学组成不一致。最后,我们假设一种新的氮化碳材料的计算模型,该模型涵盖了最重要的结构基序,并显示了Ca的带隙。 2.9 ev。

Detailed understanding of the structural and photophysical properties of polymeric carbon nitride (PCN) materials is of critical importance to derive future material optimization strategies towards more desirable optical properties and more photocatalytically active materials. However, the wide range of structural motifs found in synthesized PCNs complicates atomistic simulations that rely on well defined models. Performing hybrid DFT studies, we systematically investigate formation energy trends and optical properties of PCNs as a function of dimensionality, going from molecular oligomers over periodic sheet models to stacked crystals. Thermochemical calculations that take into account vibrational enthalpy and entropy contributions predict that a mixture of structural motifs including the melon string structure, poly(heptazine imide), and g-C3N4 motifs is stable under typical synthetic conditions. The degree of lateral condensation as well as stacking can reduce the bandgap while out-of-plane corrugation of the material increases both stability and the optical gap. The key result of this work is that already small domains of strongly condensed PCN are calculated to give rise to favorable optical properties. This result reconciles conflicting literature reports indicating that the thermodynamically favorable melon motif has a too large bandgap compared to experiments, while the g-C3N4 structure, for which bandgap calculations are in better agreement with experiments, does not agree with measured chemical compositions of PCNs. Finally, we postulate a new computational model for carbon nitride materials that encompasses the most important structural motifs and shows a bandgap of ca. 2.9 eV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源