论文标题

Softiga:软数字分析

SoftIGA: soft isogeometric analysis

论文作者

Deng, Quanling, Behnoudfar, Pouria, Calo, Victor M.

论文摘要

我们将SoftFem的概念扩展到同几何分析(IGA),以减少IGA离散问题的刚度(因此是条件数)。我们将最终的近似技术称为软ig。我们通过先删除IgA光谱异常值以降低系统的刚度来获得由此产生的离散化。然后,我们向标准的IgA双线性形式添加高级衍生产品惩罚条款(带有负惩罚参数)。惩罚参数旨在最大程度地减少光谱/分散误差,同时保持双线性形式的固定性。我们为无离群的IGA(OF-IGA)和软体元素建立分散错误。我们还为产生的矩阵特征值问题得出了分析本特征,并表明IGA系统的刚度和状态数量显着改善(减少)。对于特征值,我们证明了$ h^{2p+4} $的超浓缩结果,其中$ h $表征网格大小,$ p $指定b-spline Bastic Bastic函数的顺序。为了说明主要思想并得出分析结果,我们将重点放在多个维度的1D和张量产品网格中的均匀网格上。对于本征函数,Softiga提供与标准IgA近似相同的最佳收敛速率。各种数值示例证明了软ig的优势,而不是IgA。

We extend the softFEM idea to isogeometric analysis (IGA) to reduce the stiffness (consequently, the condition numbers) of the IGA discretized problem. We refer to the resulting approximation technique as softIGA. We obtain the resulting discretization by first removing the IGA spectral outliers to reduce the system's stiffness. We then add high-order derivative-jump penalization terms (with negative penalty parameters) to the standard IGA bilinear forms. The penalty parameter seeks to minimize spectral/dispersion errors while maintaining the coercivity of the bilinear form. We establish dispersion errors for both outlier-free IGA (OF-IGA) and softIGA elements. We also derive analytical eigenpairs for the resulting matrix eigenvalue problems and show that the stiffness and condition numbers of the IGA systems significantly improve (reduce). We prove a superconvergent result of order $h^{2p+4}$ for eigenvalues where $h$ characterizes the mesh size and $p$ specifies the order of the B-spline basis functions. To illustrate the main idea and derive the analytical results, we focus on uniform meshes in 1D and tensor-product meshes in multiple dimensions. For the eigenfunctions, softIGA delivers the same optimal convergence rates as the standard IGA approximation. Various numerical examples demonstrate the advantages of softIGA over IGA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源