论文标题
一般和色度记忆之间的无限分离
Infinite Separation between General and Chromatic Memory
论文作者
论文摘要
在本文中,我们在有限的颜色上构建了一个成功的条件$ w $,首先,每个有限的竞技场都有一种具有2种通用记忆状态的策略,这是最佳的W.R.T.〜 $ W $,其次,没有$ K $,因此每个有限的竞技场都具有$ k $的策略,具有$ K $的策略,具有最佳的W.R. $ W.R. $ w.r. $ w.r. w.r. w.r. $ w.r. $ w $ w.r. w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ w $ W $ W $ w $ W $ W $ W $ W $ W $ W $ W。
In this paper, we construct a winning condition $W$ over a finite set of colors such that, first, every finite arena has a strategy with 2 states of general memory which is optimal w.r.t.~$W$, and second, there exists no $k$ such that every finite arena has a strategy with $k$ states of chromatic memory which is optimal w.r.t.~$W$.