论文标题

多次复发的统一联合性

Uniform syndeticity in multiple recurrence

论文作者

Jamneshan, Asgar, Pan, Minghao

论文摘要

本文的主要定理建立了统一的联合性结果,该结果是对概率空间的量度更具衡量作用的复发。更确切地说,对于任何整数$ d,l \ geq 1 $以及任何$ \ varepsilon> 0 $,我们证明存在$δ> 0 $和$ k \ geq 1 $(仅取决于$ d $,$ l $和$ \ \ varepsilon $),以便以下以下内容。 考虑一个可解决的组$γ$的派生长度$ l $,概率空间$(x,μ)$和$ d $ d $ pairwise Ponsinging Menature-temucting Menature vermuting umporting $γ$ - actions $ t_1,\ ldots,t_d $,t_d $ on $(x,μ)$。让$ e $是$ x $的可测量设置,带有$μ(e)\ geq \ varepsilon $。然后,$ k $许多(左)翻译为\ begin {equation*} \ left \ {γ\inγ\colonμ(t_1^{γ^{γ^{ - 1}}}(e)\ cap t_2^{γ^{γ^{ - 1}}}}}}}}}}}} \ circt t^{circt t^{-1 cyp^{-1} cd {-1}^cd {-1}^c cd {-1}^c cd {-1}^c cd {-1}^{-1} t^{γ^{ - 1}} _ d \ circt t^{γ^{ - 1}} _ {d-1} \ circ \ ldots \ circ t^{γ^{γ^{ - 1}}} _ 1(e))该结果扩展并通过Furstenberg和Katznelson进行了统一的结果。 作为组合应用,我们获得以下均匀性结果。对于任何整数$ d,l \ geq 1 $和任何$ \ varepsilon> 0 $,$δ> 0 $和$ k \ geq 1 $(仅取决于$ d $,$ l $和$ \ \ varepsilon $),以便所有有限的可解决长度$ l $ $ g $ c $ e \ e^$ e^$^dimime $^dimie d}(e)\ geq \ varepsilon $(其中$ m $是$ g $上的统一度量),我们有$ k $ -many(左)翻译\ begin {multline*} \{g\in G\colon m^{\otimes d}(\{(a_1,\ldots,a_n)\in G^d\colon (a_1,\ldots,a_n),(ga_1,a_2,\ldots,a_n),\ldots,(ga_1,ga_2,\ldots, ga_n)\在e \}中)\geqΔ\} \ end {multline*}覆盖$ g $。 我们主要结果的证明是奥斯汀正式埃戈迪克szeméredi定理的超富版版本的结果。

The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers $d,l\geq 1$ and any $\varepsilon > 0$, we prove the existence of $δ>0$ and $K\geq 1$ (dependent only on $d$, $l$, and $\varepsilon$) such that the following holds: Consider a solvable group $Γ$ of derived length $l$, a probability space $(X, μ)$, and $d$ pairwise commuting measure-preserving $Γ$-actions $T_1, \ldots, T_d$ on $(X, μ)$. Let $E$ be a measurable set in $X$ with $μ(E) \geq \varepsilon$. Then, $K$ many (left) translates of \begin{equation*} \left\{γ\inΓ\colon μ(T_1^{γ^{-1}}(E)\cap T_2^{γ^{-1}} \circ T^{γ^{-1}}_1(E)\cap \cdots \cap T^{γ^{-1}}_d\circ T^{γ^{-1}}_{d-1}\circ \ldots \circ T^{γ^{-1}}_1(E))\geq δ\right\} \end{equation*} cover $Γ$. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers $d,l\geq 1$ and any $\varepsilon > 0$, there are $δ>0$ and $K\geq 1$ (dependent only on $d$, $l$, and $\varepsilon$) such that for all finite solvable groups $G$ of derived length $l$ and any subset $E\subset G^d$ with $m^{\otimes d}(E)\geq \varepsilon$ (where $m$ is the uniform measure on $G$), we have that $K$-many (left) translates of \begin{multline*} \{g\in G\colon m^{\otimes d}(\{(a_1,\ldots,a_n)\in G^d\colon (a_1,\ldots,a_n),(ga_1,a_2,\ldots,a_n),\ldots,(ga_1,ga_2,\ldots, ga_n)\in E\})\geq δ\} \end{multline*} cover $G$. The proof of our main result is a consequence of an ultralimit version of Austin's amenable ergodic Szeméredi theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源