论文标题
测试R $^2 $扫描密度可用于具有和没有范德华校正的固体的热力学稳定性
Testing the r$^2$SCAN density functional for the thermodynamic stability of solids with and without a van der Waals correction
论文作者
论文摘要
材料发现的核心目的是对热力学特性的准确且可靠的描述,例如形成和分解的焓。 r $^2 $扫描修订,对严格限制和适当的标准(扫描)元元化梯度近似(meta-gga)平衡数值稳定性,并具有很高的一般精度。为了评估固态热力学的r $^2 $扫描描述,我们使用R $^2 $扫描,扫描和PBE评估了1,000多个固体的形成和分解焓,平衡体积和基本频带,以及两个分散的变体,scan+RVV10和R $^2 $^2 $^2 $^2 $^2 $ rv+rv 2 $^2 $ rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+r.rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+rv+rv。我们表明,r $^2 $扫描达到的精度与扫描相当,并且经常在扫描已经出色的准确性方面提高。虽然经常观察到扫描+RVV10会使扫描的形成焓恶化,并且对扫描的细胞体积预测没有实质性的纠正,但R $^2 $ scan+RVV10预测,比R $^2 $扫描,比少于细胞的volumes and y $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2 $^2.发现预测形成焓的平均绝对误差从GGA水平到元GGGA水平降低了1.5至2.5倍。对于分解焓观察到误差较小。对于编队焓,R $^2 $扫描比扫描对金属间系统的扫描有所改善。对于几类系统(过渡金属,金属间的金属,弱结合的固体和分解为化合物的焓),GGA与元gga相当。总共可以建议将R $^2 $扫描和R $^2 $扫描+RVV10作为稳定的,通用的材料元gga,用于材料发现。
A central aim of materials discovery is an accurate and numerically reliable description of thermodynamic properties, such as the enthalpies of formation and decomposition. The r$^2$SCAN revision of the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) balances numerical stability with high general accuracy. To assess the r$^2$SCAN description of solid-state thermodynamics, we evaluate the formation and decomposition enthalpies, equilibrium volumes, and fundamental bandgaps of more than 1,000 solids using r$^2$SCAN, SCAN, and PBE, as well as two dispersion-corrected variants, SCAN+rVV10 and r$^2$SCAN+rVV10. We show that r$^2$SCAN achieves accuracy comparable to SCAN and often improves upon SCAN's already excellent accuracy. Whereas SCAN+rVV10 is often observed to worsen the formation enthalpies of SCAN, and makes no substantial correction to SCAN's cell volume predictions, r$^2$SCAN+rVV10 predicts marginally less-accurate formation enthalpies than r$^2$SCAN, and slightly more-accurate cell volumes than r$^2$SCAN. The average absolute errors in predicted formation enthalpies are found to decrease by a factor of 1.5 to 2.5 from the GGA level to the meta-GGA level. Smaller decreases in error are observed for decomposition enthalpies. For formation enthalpies r$^2$SCAN improves over SCAN for intermetallic systems. For a few classes of systems -- transition metals, intermetallics, weakly-bound solids, and enthalpies of decomposition into compounds -- GGAs are comparable to meta-GGAs. In total, r$^2$SCAN and r$^2$SCAN+rVV10 can be recommended as stable, general-purpose meta-GGAs for materials discovery.