论文标题

时间网络的嵌入和轨迹

Embedding and trajectories of temporal networks

论文作者

Thongprayoon, Chanon, Livi, Lorenzo, Masuda, Naoki

论文摘要

时间网络数据越来越多地在各个领域中获得,并且通常代表具有复杂的结构和时间演变的高度复杂的系统。由于难以处理此类复杂数据,因此对于嵌入在低维空间中的数字轨迹中可能是有用的。我们将这种过程称为时间网络嵌入,这与旨在嵌入单个节点的过程不同。时间网络嵌入是一项具有挑战性的任务,因为我们通常只能访问节点对之间的离散时戳事件,而且通常情况下,事件发生在不规则的间隔中,这使得在给定的时间构建网络已经成为一个非平凡的问题。我们提出了一种生成嵌入在低维空间中的时间网络的轨迹的方法,并以一系列时间标记事件为输入。我们通过结合具有里程碑意义的多维缩放来实现这一目标,这是众所周知的多维缩放方法的样本外扩展,以及领带时间网络的框架。这种组合使我们能够获得描述时间网络演变的连续时间轨迹。然后,我们研究所提出的时间网络嵌入框架的数学特性。最后,我们展示了具有社会联系的经验数据的方法,可以在一天和不同的日子内找到联系事件的时间组织以及它们的损失。

Temporal network data are increasingly available in various domains, and often represent highly complex systems with intricate structural and temporal evolutions. Due to the difficulty of processing such complex data, it may be useful to coarse grain temporal network data into a numeric trajectory embedded in a low-dimensional space. We refer to such a procedure as temporal network embedding, which is distinct from procedures that aim at embedding individual nodes. Temporal network embedding is a challenging task because we often have access only to discrete time-stamped events between node pairs, and, in general, the events occur with irregular intervals, making the construction of the network at a given time a nontrivial question already. We propose a method to generate trajectories of temporal networks embedded in a low-dimensional space given a sequence of time-stamped events as input. We realize this goal by combining the landmark multidimensional scaling, which is an out-of-sample extension of the well-known multidimensional scaling method, and the framework of tie-decay temporal networks. This combination enables us to obtain a continuous-time trajectory describing the evolution of temporal networks. We then study mathematical properties of the proposed temporal network embedding framework. Finally, we showcase the method with empirical data of social contacts to find temporal organization of contact events and loss of them over a single day and across different days.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源